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Abstract

Forced alignment methods have recently seen great progress
in the fields of acoustic-phonetics studies of low-resource lan-
guages. Code-mixed speech however, presents complex chal-
lenges to forced-alignment techniques, because of the longer
phonemic inventory of bilingual speakers, the nature of ac-
cented speech, and the confounding interaction of two lan-
guages at a frame level. In this paper, we use the Montreal
Forced Aligner to annotate the Phonetically Balanced Code-
Mixed read-speech corpus (7.4 hours; 113 speakers) in 3 dif-
ferent training environments (code-mixed, Hindi and English).
Additionally, we present an analysis of alignment errors using
phonological and data-driven features using Random Forest and
Linear mixed effects models. We find that contextual influ-
ence of neighbouring phonemes influences the error in align-
ment most significantly, when compared against any other fea-
tures. Many of the alignment errors by phonological features
can be explained by their acoustic distinctiveness. Additionally,
the amount of training data by phone type also contributed to
lowering their respective error rates.
Index Terms: code-mixing, code-switching, forced alignment,
error analysis, speech recognition

1. Introduction
Forced alignment techniques have become increasingly popular
in the analysis and description of speech data. After success-
ful performance of forced aligners on large scale monolingual
speech resources [1, 2, 3], a variety of non-traditional speech
resources [4, 5, 6] have also been explored in the past decade.
However, code-mixed speech may present a challenge for auto-
matic speech alignment, given the complex interaction of two
languages at the frame level within the same utterance.

Code-mixed speech is frequently observed in bilingual and
multilingual communities all across the world. Speakers ex-
hibit alternation either within the utterance (code-mixing) or at
a clausal or phrasal level (code-switching). In light of its rel-
evance and complexity, techniques on processing [7, 8, 9, 10]
code-mixed speech have actively been explored in the past few
years. Until a few years ago, prevalent practices in the do-
main have included two-pass approaches; first detecting lan-
guage and then recognizing using appropriate acoustic models.
At the same time, adapting monolingual speech resources have
also seen active investment [11, 12]. More recently, dedicated
neural network architectures [13, 14, 8], augmentation of exist-
ing datasets [10] and several fine-grained problems [15, 16] in
speech recognition are being unearthed, underscoring the rele-
vance of these studies even further.
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With the rise in computational speech processing, theoret-
ical questions surrounding this phenomena may also arise, as
would a discussion on their tools and techniques. In this paper,
we present a step in this direction. We compare the performance
of Montreal Forced Aligner [1] against gold-standard annota-
tions over isolated English words from the Phonetically Bal-
anced Code Mixed corpus of Hindi-English read speech [17].
We present results in three word-level training environments; a)
with pooled Hindi and English data, b) with monolingual Hindi
data, and c) within corpus monolingual English data. Finally,
using Random Forests and Linear Mixed Effects models, we
present an analysis of forced alignment errors, against a set of
phonological and data-driven predictors.

The organization of the paper is as follows: Section 2 de-
scribes the acoustic data, the pronunciation lexicon, and the
gold-standard annotation procedure. Section 3 details the ex-
perimental procedure, with descriptions of the training datasets
for alignment, and the analytical models for evaluation. Section
4 discusses the results of the analysis, and presents comparison
between each type of experiment over different models. Section
5 concludes the paper.

2. Data
2.1. Acoustic data

The Phonetically Balanced Code Mixed (PBCM) corpus [17]
contains 6,9411 phonetically balanced sentences, recorded at
IIIT-Hyderabad. Sentences for this corpus were compiled us-
ing an optimal selection procedure from selected sections of a
prominent Hindi newspaper, Dainik Bhaskar. The speech data
for this corpus was recorded by 113 native Hindi speakers (58
male, and 55 female), all of whom were fluent in English.

Hindi English
word (types) 4790 3754
word (tokens) 54961 18839

phoneme (types) 73 52
phoneme (tokens) 194672 97137

Table 1: Distribution of Hindi-English words and phonemes in
the PBCM corpus.

2.2. Pronunciation data

The PBCM corpus was originally transcribed using the Wx
notation [18], which is a popular transcription metric for In-
dian languages, especially for NLP and related purposes. For
conducting acoustic-phonetic studies however, we compared
the pronunciations generated by Espeak, Epitran and Wx. We

1more phonetically balanced sentences were added after the original
publication, which reports 6,126 utterances



found Espeak (http://espeak.sourceforge.net/) to be the best pro-
nunciation scheme, particularly for cases where pronunciation
was not predictable by orthography. Some errors, however, still
persisted. Errors of nasalization and syllabification (irregular
schwa insertion) were corrected through a combination of man-
ual edits and phonological rules that ensured homorganic nasal-
consonant clusters.

These corrections could still not accommodate the speaker-
specific variation between the /Ã-z/ and /ph-f/ contexts, which
were not always distinct in the orthography. Manual inspection
revealed very little speaker variation in the /ph-f/ context, with
most speakers preferring the /f/ variant. But for the /Ã-z/ con-
text, speakers were found to compensate for the orthographic in-
consistency, resulting in variant pronunciations of the Ã words.
To overcome the problem of lesser represented phonemes, boot-
strapping techniques are prevalent in the forced alignment liter-
ature [5, 6, 19, 20, 21]. In such models, target phonemes in
the lexicon are mapped to more frequent and closely resem-
bling phonemes. Therefore, we decided to create several boot-
strapped versions of each of the variants (in /Ã-z/ and /ph-f/)
lexicon, and allowed the Montreal Forced Aligner [1] to pick
the most appropriate variant. The pronunciation selected by the
best performing bootstrapping model was chosen to be listed in
the lexicon. Thus, we created a variant free lexicon where the
/ph-f/ variation was mapped entirely to /f/ and each pronuncia-
tion of the /Ã/ words were given a unique identity.

2.3. Gold-standard alignment data

After the development of a variant-free lexicon, each word in
the dataset was manually given a) Hindi, b) English and c) part-
Hindi tags, by two Hindi speakers (one fluent, one native). Part-
Hindi tags referred to switches between Hindi and English at a
morphological level [22] (e.g, amerik-i, for American). Such
words were removed from the analysis. Among the English
words, 10% of the words were selected for gold-standard an-
notation. To maintain consistent speaker variation, 6 sentences
from each speaker’s set of sentences were chosen. Word and
phoneme level boundaries for each of these words were manu-
ally annotated and cross-evaluated by the two Hindi speakers.
Forced alignment results obtained from each training environ-
ment (discussed Section 3.1) will be analyzed against the words
in this dataset.

3. Experimental setup
This section describes the experimental procedure for the anal-
ysis of force aligned English words. First, we discuss the 3
training environments using each of which, the isolated English
words were aligned. We then introduce the phonological and
data driven features that were used as predictors for the evalua-
tion of the forced alignment.

3.1. Acoustic models

As a preliminary step, the complete PBCM corpus was used
as training as well as alignment data. This initial alignment
resulted in word and phoneme boundaries for every sentence
in the corpus. Using this dataset, and the TextGridTools [23]
package, we separated the data into word level chunks. Subsets
of this data were created in the following way:

• Code-mixed Words (CoM-W): All the extracted words
from the aligned sentences were used as training envi-
ronment for this experiment. This included Hindi words,

English words, as well as those English words that car-
ried Hindi inflection (for example: “amerik-i”). The pur-
pose of this sub-experiment was to maximize coverage
for each phoneme within the training dataset, and pool
Hindi and English word-level data for the alignment.

• Hindi Words (Hin-W) From the aforementioned word-
level dataset, monolingual Hindi words were separated
and a new dataset was created. The purpose of this
sub-experiment was to assess the reliability of forced
alignment in absence of any English data. This type of
setup also probes the question of the accuracy of align-
ment when all the phonemes are well represented, but the
phonotactic information of English words is withdrawn.

• English Words: In the same vein as the previous setup
(Hin-W), monolingual English words separated from the
CoM-W dataset, and an English-only model was created.
The purpose of this setup was to evaluate the role of
monolingual English data in identical training and align-
ment environments.

Each of these datasets was then sent to align the isolated En-
glish words dataset (Eng-W trained and aligned on itself), us-
ing the speaker-adapted triphone model. From the obtained
forced alignment timestamps, Midpoint (the central timestamp
between left and right boundary) for each phoneme were ex-
tracted. Similarly, this Midpoint value was extracted for the
gold-standard annotations as well. The absolute difference be-
tween the Gold-standard Midpoint and the Forced-Aligner Mid-
point will serve as the main dependent variable for each of the
subsequent analyses.

3.2. Predictors

In this subsection, we discuss each of the features (both phono-
logical, and data-driven) that were used as predictors to evaluate
the accuracy of the forced alignment. To consistently maintain
the number of features per phoneme, all phonemes in the corpus
were uniquely specified for each of these features.

3.2.1. Consonant-specific feature set

The following set of features were specified for each consonant
in the inventory:

• Manner of articulation
• Place of articulation
• Voicing type

Existing literature on error evaluation of speech recognition
models and forced aligners have shown that some of these
features are recognised better than others [24], [6]. Mel-
frequency cepstral coefficients (MFCCs) are the standard acous-
tic speech signal representations in speech recognition, and in-
deed in forced alignment models. [24] compared that the perfor-
mance of an MFCC-based recognition system with an articula-
tory based system trained on German speech, some articulatory
features were suboptimally encoded by MFCCs, such as labial,
coronal, dental, palatal, velar, fricative, –round, high, back and
–voice. Similarly, [6] finds that a cross-lingual forced alignment
of non-English speech using English models performed bet-
ter on natural classes of stops, fricatives, nasals and affricates.
These results supported our motivation for separating our con-
sonants and vowels into sets of natural classes of place, manner
and voicing features. In general acoustic terms, consonant spe-
cific features, fricatives and stops were hypothesized to be well
aligned given their prominent acoustic characteristics. For in-
stance, the boundaries of fricatives are marked by a section of
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Figure 1: Variance importance for predicting Errorconsonant using consonant specific features across the CoM-W, Hin-W and Eng-W
training environments
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Figure 2: Variance importance for predicting Errorvowel using consonant specific features across the CoM-W, Hin-W and Eng-W
training environments

noise and those of stops are marked by a clear burst in most
cases, suggesting better alignments, while approximants poorly
so, given their dynamic transitions into adjacent vowels.

3.2.2. Vowel-specific feature set

The following set of features were specified for each vowel in
the inventory:

• Vowel height
• Vowel frontness/backness
• Vowel length

Among these, height and backness were expected to influence
the alignment quality more significantly, especially with high
and back vowels given the findings by [24].

3.2.3. Data driven feature set

The following set of features were specified for each phoneme
in the inventory, regardless of its segment type (consonant or
vowel). However, the phone frequency are relevant only selec-
tively for particular training environments. For example, the
frequency of English phone is not relevant for training environ-
ments with Hindi monolingual words.

• Right boundary
• Left boundary
• Phone frequency in Hindi Words
• Phone frequency in English Words

Here, the right and left boundary indicated whether the target

phone is surrounded by a vowel, a consonant or is a boundary
phone. Due to coarticulatory effects, and the triphone modeling
inherent in the Montreal Forced Aligner, the influence of the
neighbouring environment was hypothesized to be strong on the
alignment quality. Similarly, it was important to analyze the
error in terms of the frequency of the phone in the Training
environment.

3.3. Statistical models

This subsection gives an overview of the statistical models de-
veloped for use in the later part of the analysis. We use two
statistical models: Random Forests, and Linear mixed effects
model to analyze the Error under each training environments.

3.3.1. Random forest

Random forests have emerged as powerful tools in estimating
the importance of individual features in the prediction of a
dependent variable. To minimize the effect of speaker variation
on alignment errors, the predicted variable Error was passed
through a per speaker z-score normalization. Then, using the
Party package [25, 26] in R, a random forest model was used to
analyze Error for each of the vowel and consonant type. The
entire set of relevant features in each case was used as predictor
variables for each type of segment (vowel or consonant) and
experiment. Therefore, for example:



Errorvowel ∼ Height+Backness+Roundedness

+ Left.Context+Right.Context

+ Eng.Ph.Freq +Hin.Ph.Freq

+ Length

Here, equation 1 represents the model equation for Error in
vowels in the CoM-W context. All the vowel specific features
have been specified in the model, in addition to the global fea-
tures. Their individual influence is described in the Results sec-
tion, and can be seen in Figure 2.

3.3.2. Linear mixed effects model

Random forest and linear mixed effects models are comple-
mentary statistical methods [27]. While random forest will
provide the overall importance of the variables of interest
(factorial or continuous), mixed-effects model will be used to
highlight how these variables affect the amount of alignment
errors, while being able to capture random-effect factors such
as the speakers and words in the sample. The model structure
will be largely the same as 3.3.1 but with the addition of
by-speaker and by-word random intercepts.

Errorvowel ∼ Height+Backness+Roundedness

+ Left.Context+RightContext

+ Eng.Ph.Freq +Hin.Ph.Freq

+ Length+ (1|Speaker)
+ (1|Word)

4. Results
This section presents the results obtained from comparing the
Error computed using the absolute difference in Midpoints per
phoneme, from the gold-standard annotations and the forced-
aligned annotations. Error thus obtained will be modeled as
a predicted variable using RandomForest and Linear Mixed Ef-
fects modeling. RandomForest and will be presented for vowels
and consonants separately.

4.1. Descriptive Statistics

Table 2 displays the error tolerance levels (in msec) for each
of the training environments (CoM-W, Hin-W and Eng-W).
This means that, when trained on code-mixed word level data,
52.58% phoneme boundaries matched gold-standard annota-
tions within <10 ms. A comparison across rows (different train-
ing models) shows that CoM-W was the best performing model,
with the greatest coverage of phonemes in the <10 ms range.

Table 2: Comparison of tolerance (in msec) of the three models

Tolerance (msec)
<10 <20 <30 <40 <50

CoM-W 52.58 83.00 94.54 97.33 98.94
HIN-W 50.75 80.37 92.56 96.14 98.16
ENG-W 51.89 82.71 94.12 97.27 98.86

4.2. Random Forest

Figures 1 and 2 display the relative importance of each feature
for predicting error. The deviance from the red axis indicates

the relative strength of each feature in predicting the error in
alignment. Across all the training environments (CoM-W, Hin-
W, Eng-W), the Right Context and the Left Context appear to be
a lot more influential in the error prediction, compared with the
phonological features of the target phone. This reflects the na-
ture of consonants being encoded partly in surrounding phones
especially vowels, e.g. stops. Since about a third (34%) of con-
sonants in the corpus are stop consonants, which rely on transi-
tional cues, it is possible that co-articulation may be governing
this observation. Consistent patterns like these are not quite
so clear among other features. The representation of the target
phone in the training corpus is significant, but once again, does
not influence the error as much. This indicates that simply in-
creasing the individual presence of a phoneme may not be help-
ful enough, unless its supporting context is present. The vocalic
context appears to be largely influenced by its Right boundaries,
but not as much as by its left boundaries. This suggests that
the vowels are better supported by their left boundaries, likely
from an onset consonant, compared to a coda consonant, a well-
established phonetic universal. Let us explore these effects in a
more granular fashion in the next subsection.

4.3. Linear Mixed-Effects Regression

Using the lmerTest [28] package in R, we predicted the Er-
ror variable using fully specified models for vowels and con-
sonants separately. Similar to the observations obtained in Ran-
dom Forest model, we found a significant effect of surrounding
phones (p < 0.001) on the alignment error in the consonantal
context. For each of the training environments, non-boundary
phones have higher error than boundary phones. Reverse trends
were observed in [6], where non-boundary phones showed bet-
ter alignment. However, the comparison with our results is not
straightforward: because the analysis in [6] was conducted us-
ing monophone based aligners (HMAlign and P2FA), and Mon-
treal Forced Align is a speaker-adapted triphone acoustic model.
Through our LMER analysis, we found increased error for con-
sonants due to both their left and right context, but for vow-
els, but b) vowels appear to be influenced largely by their Right
boundaries across all training environments. While the case for
consonants is not so clear, there is evidence that the onset (left
boundary) cues for the vowel are perceptually more significant,
than offset (right boundary) cues [29]. The presence of aspira-
tion causes the formant transitions to be more stable across the
initial and steady-state portion of the vowels [30, 31], perceptu-
ally supporting the recognition of the vowel.

5. Conclusion

In this paper, we conducted forced alignment on code-mixed
speech from the PBCM Hindi-English read speech corpus. We
created 3 types of acoustic models, code-mixed words (CoM-
W), Hindi words (Hin-W) and English words (Eng-W) from
the PBCM corpus. A variant-free Hindi-accented lexicon used
was consistent across all the training datasets. We found that
despite having only half the number of phonemes in the training
corpus, the monolingual English word model performs better
than the monolingual Hindi word model. This suggests that
despite having increased phoneme representation, we may not
achieve better alignment quality, if phonotactic information is
absent. Similarly, in the RandomForest and linear mixed effect
model analysis, we found that contextual information was most
significant in influencing the errors of alignment.
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