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Artificial language learning research has become a popular tool to investigate universal 
mechanisms in language learning. However, often it is unclear whether the found effects are 
due to learning, or due to artefacts of the native language or the artificial language, and whether 
findings in only one language will generalise to speakers of other languages. The present study 
offers a new approach to model the influence of both the L1 and the target artificial language 
on language learning. The idea is to control for linguistic factors of the artificial and the native 
language by incorporating measures of wordlikeness into the statistical analysis as covariates. 
To demonstrate the approach, we extend Linzen and Gallagher (2017)’s study on consonant 
identity pattern to evaluate whether speakers of German and Mandarin rapidly learn the pattern 
when influences of L1 and the artificial language are accounted for by incorporating measures 
assessed by analogical and discriminative learning models over the L1 and artificial lexicon. 
Results show that nonwords are more likely to be accepted as grammatical if they are more 
similar to the trained artificial lexicon and more different from the L1 and, crucially, the identity 
effect is still present. The proposed approach is helpful for designing cross-linguistic studies.
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1. Introduction
A central topic in linguistics is seeking to understand how humans learn linguistic patterns in 
order to become competent speakers. Universal and language-specific mechanisms are said to 
guide the learner through the learning progress (e.g., Baer-Henney, Kügler, & van deVijver, 
2015; Culbertson, Smolensky, & Legendre, 2012; Kakolu Ramarao, Tang, & Baer-Henney, 2023; 
Moreton, 2008). To investigate these mechanisms, a powerful tool which is gaining increasing 
popularity is the artificial language learning (ALL) paradigm. The paradigm allows for monitoring 
countless aspects of language learning. With a relatively simple laboratory setting, we can 
observe mechanisms guiding language acquisition, language learning, and comparisons thereof. 
In such an experiment, an artificial miniature lexicon is governed by a certain grammatical 
pattern. Participants are first exposed to the artificial language and in a subsequent perception 
or production test it is examined whether the pattern has been learned.

Artificial languages are not only useful to track the acquisition path of the language-learning 
child (Berko, 1958; Kakolu Ramarao, Zinova, Tang, & van de Vijver, 2022; van de Vijver & Baer-
Henney, 2014); artificial languages have also been used to investigate learning mechanisms in 
both children (Chambers, Onishi, & Fisher, 2003; Cristià & Seidl, 2008; Culbertson & Newport, 
2015; White & Sundara, 2014) and adults (Baer-Henney & van de Vijver, 2012; Carpenter, 2010; 
Finley, 2011, 2017; Finley & Badecker, 2009; Martin & White, 2021; Moreton, 2008; Onishi, 
Chambers, & Fisher, 2002; Pater & Tessier, 2003; Wilson, 2006). Researchers have uncovered 
evidence for learning mechanisms, the so-called biases that are said to guide the learner during 
learning process (e.g., Baer-Henney et al., 2015; Carpenter, 2010; Culbertson & Newport, 2015; 
Culbertson et al., 2012; Finley, 2011, 2017; Finley & Badecker, 2009; Martin & White, 2021; 
Moreton, 2008; Tang, Kakolu Ramarao, & Baer-Henney, 2022; van de Vijver & Baer-Henney, 
2014; Wilson, 2006). The consequence of biases is that certain phonological patterns are learned 
with more ease than others. Linzen and Gallagher (2017), for instance, have shown that English 
speaking participants rapidly take up a phonological pattern from an artificial language that 
requires two consonants of the artificial stimulus to be identical. After short training the identical 
consonant pattern is predominantly generalised (as compared to a non-identical consonant 
pattern). Learning mechanisms like this one are viewed as underlying learning mechanisms that 
all humans share.

However, when utilising the ALL paradigm, there is the risk that the learning effects 
experimenters observe actually are the unintended byproducts of the native language of the 
learner and/or the artificial language to be learned during the experiment. The present paper 
offers a possibility to disentangle a possible learning effect from artefacts of the native and the 
artificial language during artificial language learning. In order to provide convincing evidence, 
ALL research should fulfill the following criteria. First, convincing evidence for the universality 
of mechanisms should, in fact, address more languages or find replicated effects in multiple 
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languages. Second, a possible effect should not be able to be explained by characteristics of the 
native language of the speaker nor by characteristics of the artificial language used in the paradigm 
but only due to learning. Fulfilling both criteria can pose some methodological problems as we 
will discuss in the following section. In the present paper, we offer an approach to address these 
problems. The approach facilitates designing cross-linguistic studies by statistically controlling 
for linguistic factors of the artificial and the native language. Several measures of wordlikeness 
are incorporated into the analysis as covariates.

1.1. Challenges in stimulus design in ALL research
Stimuli in ALL studies are typically designed by combining a subset of the L1 phoneme inventory 
(Baer-Henney et al., 2015; Skoruppa, 2019; White et al., 2018), or by simply replacing sounds in 
subsyllabic positions of real words (Keuleers & Brysbaert, 2010). This is to ensure that the items 
conform to the phonotactics of the participants’ L1. We believe that the desire to come up with 
AL stimuli that are similar and yet different to the L1 bears some risks to overlook peculiarities 
of the L1 that possibly have an impact on the outcome of an ALL study. In the remainder of this 
section, we discuss the possible challenges ALL research faces and a number of problems that 
arise from this methodology.

When conducting an ALL study researchers face several challenges. One of the challenges 
concerns the scenario of investigating the same mechanism with different speaker populations. 
Commonly, the same set of language materials is created for all different language groups 
in order to make a better comparison. However, the language material used cannot contain 
linguistic properties that vary too widely from the native languages. As the number of languages 
involved in the study increases, the design space of the material becomes more restricted. Let us 
consider a cross-linguistic study such as White et al. (2018)’s, which could raise some difficulties. 
The most basic criterion in this approach is to ensure the languages share the same phonemes. 
See Figure 1 for an illustration of the problem. In the best scenario, the number of overlapping 
phonemes would be reasonably large if the two languages are within the same language family 
(e.g., English and German) (Figure 1b). If the two languages are more distinct (e.g., German 
and Mandarin), the number of overlapping phonemes is small (Figure 1a). However, to better 
establish the universality of learning mechanisms, one must increase the number of languages 
as well as selecting languages that are more distinct, resulting in a highly reduced subset of 
phonemes (Figure 1c and Figure 1d).

With only a small subset of phonemes available, the research potential of the ALL paradigm 
becomes limited in terms of the type of mechanisms that can be examined and the number of 
artificial language stimuli used in the experiment (henceforth: nonwords) that can be generated. 
In sum, ALL experiments in phonology usually ensure that the miniature artificial language 
broadly conforms to the typical word shapes of the learners’ L1 in order to minimise the potential 
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negative effects of being too different from the learners’ L1. For instance, learners could fail 
to perceive the nonwords correctly due to novel phonotactic patterns. At the same time, the 
nonwords in the miniature artificial language are designed to be different from the real words 
of the learners’ L1 in order to minimise the interference from existing word knowledge. This 
balance of trying to be similar and yet different from the participants’ L1 is difficult to strike. This 
is particularly an issue for cross-linguistic studies if a mechanism is found to be at work only in 
some language groups but not others. This could be driven by a difference in how this balance 
was struck across the language groups.

Figure 1: Decreasing phoneme overlap (gray area) as more languages (circles) are taken into 
account.

A second challenge is to cope with the fact that different native languages can influence the 
learning differently. A wealth of literature on Second Language Acquisition (see e.g., Edwards 
& Zampini, 2010; Kroll & De Groot, 2009, for an overview) has highlighted the role of language 
transfer in second language learning. When learning a new language, L1 influences how L2 (and 
L3) is learned. It has been shown that the same L2 is learned differently by learners with different 
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L1s (Iverson & Evans, 2007, 2009; Schepens, van Hout, & Jaeger, 2020), and the similarity 
between L1 and L2 has been shown to have both a facilitatory effect and an inhibitory effect on 
language learning. Now ALL experiments on phonological research questions typically overlook 
the possible interaction of their L1 and the AL. Learners are faced with an artificial language, 
but the AL is not controlled for possible L1 effects. A particular L1 might interact differently 
with different artificial languages (see Onnis and Thiessen (2013) for such an effect in syntactic 
learning). The specific choice of speaker population to be tested can have a consequence for the 
outcome of the study.

One risk is that researchers could select languages that work against the mechanism of 
interest to best evaluate its robustness. For instance, an ALL study by Yin and White (2018) 
found an effect of homophony avoidance with L1-English participants. In this study, L1-English 
learners were biased against phonological patterns that create homophony. However, the fact 
that English does not have a high degree of homophony could be driving the effect of homophony 
avoidance. Therefore, this study could benefit from a replication with speakers of a homophone-
rich language, such as Mandarin Chinese, to evaluate the universality of homophony avoidance. 
Consider the following two hypothetical examples: (1) In the specific choice of artificial items 
chosen by the researchers, they could overlook hidden “subpatterns” in L1. A specific nonword 
might resemble 80% of L1 words that follow the pattern of interest while the L1 as a whole does 
not display a pattern. For instance, in an experiment teaching a fronting pattern experimenters 
might overlook how the specific phonological contexts in the nonwords are accidentally very 
similar to a subpart of the learners’ L1 lexicon in which front sounds are very common, even 
though the overall lexicon does not display such a rule. (2) Researchers could over-rely on broad 
generalisations (e.g., L1 has vowel harmony or L1 is a trochaic language). The information that 
vowel harmony may only apply to a certain word class or that trochees are predominantly found 
in disyllabic words but not in trisyllabic words may be missed.

Let us take a closer look at what solutions to the abovementioned problems the ALL and 
psycholinguistic literature offers, and which problems are still to be solved. One approach used 
by some studies is to run a control condition in which there is only the test phase without 
training (Finley & Badecker, 2012), or a control condition with an uninformative training 
phase not containing critical items (Finley, 2011). The control group is then compared with the 
experimental group that received training. There are two main issues with the control group 
approach of dealing with L1 effects. First, the strength of L1 might be different across the two 
groups. Let us assume that the L1 has a similar effect as the hypothesised learning mechanism on 
the AL test items. The control group approach relies on the assumption that the L1 affects across 
the control group and the experimental group equally because the difference in the responses of 
the test items is interpreted as evidence for the learning mechanism at work. However, should the 
amount of L1 affect the two groups unequally, then the effect of the mechanism could be masked 
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or falsely supported by the difference in the responses of the groups. The effect might be masked 
when the L1 effect is stronger in the control group than in the experimental group because, for 
instance, there is simply no AL input to rely on. Subsequently, the difference between the two 
groups are evened out. The effect might be falsely supported when the L1 effect is stronger in 
the experimental group than in the control group because, for example, the statistical patterns 
of the AL input primes those same patterns in the L1 thus enhancing the L1 effect. In other 
words, languages which already display a systematic pattern (in either direction) in their L1, 
and therefore in a control group, will not be evaluated accordingly, since there would be no 
possibilities to disentangle the influence of the mechanism at work and prior knowledge. Second, 
the control group approach could lead to potential misinterpretation of seemingly contradicting 
findings from different language groups. There is the risk that differences between control and 
experimental groups are bigger in one language population but smaller or absent in another 
language population. This would, in fact, suggest that the mechanism is not universal.

Another approach is to construct AL stimuli that have been controlled for their L1 wordlikeness. 
The following studies examine the existence of the patterns of interest using a lexicon. Baer-
Henney (2015), for instance, used frequency counts of types and tokens to establish hypotheses 
regarding the outcome of the experiment if participants were to mirror lexical statistics. Similarly, 
Seidl and Buckley (2005) excluded a pre-existing bias on the basis of a global check of the lexicon 
in which they find that both patterns under investigation occur equally often. Other studies 
dedicated parts of their discussion to a simple check of lexical frequencies and find their results 
matching (Greenwood, 2016) or mismatching (Finley & Badecker, 2012; Myers & Padgett, 2014) 
the lexical statistics, concluding whether lexical knowledge could have explanatory power in 
the specific case or not. What these studies have in common is that they check and/or discuss 
lexical statistics, but they do not incorporate them into the analysis. These studies evaluate 
lexical statistics that concern the pattern of interest in the artificial language and they suggest not 
testing a population of speakers in which the pattern is already part of the language. While this 
way a pattern of interest may be under control (e.g., a pattern related to consonants), another 
one may not (e.g., a potential pattern related to vowels). It is thus possible that the researcher 
unintentionally uses particularly wordlike nonwords or that certain nonwords are similar to a 
subpart of the L1 lexicon.

In fact, in psycholinguistic literature outside the context of ALL, efforts in evaluating the 
wordlikeness of nonwords across multiple languages have been similarly limited with a few 
exceptions. For instance, in nonword repetition research, Boerma et al. (2015) and Howell et al. 
(2017) have created quasi-universal nonwords for the purpose of designing a nonword repetition 
task that would function well with a large number of languages with minimal bias towards 
a particular language. In these studies the nonwords are controlled for their phonological 
structures and the number of phonological neighbours. In phonological research, T.-Y. Chen 
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and Myers (2021) created a platform for collecting wordlikeness judgements in an effort to 
encourage researchers to share their judgement data towards a compilation of a mega database 
of cross-linguistic wordlikeness judgements. While researchers could select nonwords that are 
similarly wordlike with this database, this project is still a work in progress and the languages 
involved are very limited. Methodologically, there are nonword generation tools that can 
generate nonwords based on user-specified lexical properties (e.g., Duyck, Desmet, Verbeke, & 
Brysbaert, 2004; Keuleers & Brysbaert, 2010). However, they were not designed for selecting 
cross-linguistic nonwords (at least not without further development; see Eden (2018) for a cross-
linguistic approach of measuring phonological distances). Finally, this approach falls short of 
its extendibility to multiple languages especially if the languages are typologically different, 
since the more languages we try to take into account, the harder it would be to create nonwords 
that are similarly wordlike across the languages. In sum, we believe that this approach is not 
appropriate for ALL research on the universality of learning mechanisms and in the following 
section we introduce an approach to improve the control over the design of an artificial language 
in ALL research.

1.2. A lesson from psycholinguistics
Already in 1996, a critical review of the ALL paradigm by Redington and Chater (1996, p. 129) 
highlighted the importance of item control. It was stated that “Just as psycholinguists routinely 
control for word frequency, cloze value, and the like, so researchers should routinely control for 
factors such as bigram and trigram frequencies, if they intend to eliminate hypotheses based on 
knowledge of such simple fragments, rather than, for example, memory for whole strings, the 
extraction of an underlying grammar, and so forth.”

Building on this insight, the present paper harnesses methodologies in psycholinguistic 
literature in lexical processing and human learning: Rather than controlling unwanted L1 and AL 
factors in the experimental design through stimuli selection, we take lexical statistics of L1 and 
AL into account in a regression model (Baayen 2004, 2010). Controlling for L1 and AL effects 
means that we monitor whether wordlikeness of test items to L1 words or to the artificial training 
items played a role in learning. Subjects could prefer test words that are similar to the L1 lexicon 
and to the AL lexicon in two ways. A test item can be similar to the L1/AL and can be supported 
by L1/AL lexical statistics in terms of a) the target AL pattern of interest, and b) other non-target 
patterns. In fact, the methodological decisions made in an ALL study by Boll-Avetisyan and 
Kager (2016) exemplifies the necessity of including lexical statistics in a regression model since 
controlling unwanted factors through stimuli selection is not always possible. In their study, the 
authors attempted to control for wordlikeness of L1. During stimuli selection, the authors were 
able to ensure that their nonwords were balanced across conditions in term of their positional 
syllable frequencies, transitional probabilities between phonemes, and lexical neighbourhood 
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density. However, they were unable to further control for cohort density, a measure related to 
lexical neighbourhood density. As a result, the authors added cohort density as a covariate, which 
turned out to a significant variable, in the statistical models in order to capture its potential L1 
influence on the learners when tested with the AL materials.

This approach serves two particular purposes in ALL. First, in an ALL experiment with only 
one language group, the effects of L1 and AL can be regressed to reveal the existence of the 
learning effect, even without a control group. Second, in an ALL experiment with multiple 
language groups, the effects of the respective L1s can be regressed to evaluate the universality of 
the learning effect. This approach overcomes the aforementioned shortcomings of using a control 
group and using stimuli selection to control for L1 effects, offers a control for the interference of 
the AL lexicon, as well as gives additional insights in language learning. Regressing L1 and AL 
effects would give us the ability to understand L1 and AL effects and in how they jointly affect 
learning. Learners may learn other patterns of the AL lexicon, as well as the intended patterns 
that are relevant to the learning effect of interest. By controlling wordlikeness of test items 
to training items with regression, we can better understand whether the learning effect is at 
play. We are therefore less likely to miss the effect of an effect even if the effect was inherently 
small and possibly masked by L1 and AL. If this were the case, no difference between control 
and experimental groups would arise. By taking L1 and AL into account as covariates, subtle 
effects have a better chance of being detected. By regressing effects of multiple L1s instead of a 
categorical variable of language groups, researchers would be able to understand the cause of 
any potential language group differences. The statistical model enables us to better separate the 
native language effect from the learning effect by having gradient language factors (compared 
to a categorical factor of language groups). An example of this approach to understanding cross-
linguistic differences can be found in a phonetic study by Burchfield and Bradlow (2014) on the 
syllable reduction effect in Mandarin and English (see Günther, Smolka, and Marelli (2019) for 
another example). The authors observed cross-linguistic differences, with Mandarin showing 
more syllable reduction than English. Crucially, this language group difference was reducible to 
the differences in the relative proportions of open and closed syllables across these languages. In 
other words, the observed cross-linguistic differences in the dependent variable are determined 
by specific cross-linguistic structural differences.

We illustrate our proposed approach by evaluating the impact of the L1 in artificial language 
learning. Linzen and Gallagher (2017)’s study on the identity effect in English will serve as 
a starting point for the investigation of the relevance of several factors from the L1 and AL 
lexicons. We adopted their paradigm because it investigates a general type of learning (not 
as specific as dealing with a learning bias), and the findings will be applicable to all learning 
studies, including the strand of ALL studies concerning possibly universal biases. Linzen and 
Gallagher (2017) trained English speakers with the same number of artificial words containing 
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identical and non-identical consonants. Natural language is likely to have fewer words containing 
identical consonants than those containing non-identical consonants (Graff & Jaeger, 2009; see 
references within Tang & Akkuş, 2022). Thus, the training set exhibited an overrepresentation of 
consonant identity nonwords relative to chance and this led speakers to be more likely to accept 
new items as part of the learned language if they conformed to the identity pattern. We describe 
the details of the experiment in the section below. Linzen and Gallagher (2017) did run a control 
version of their experiment to rule out the possibility of a pre-existing bias resulting from words 
of the L1 as compared to resulting from exposure phase. Participants from the control group 
received no training and showed no preference for identical consonant frames while participants 
from the experimental group showed a preference. Nonetheless, it was acknowledged by the 
authors that the possible influence of L1 and the memory of AL exposure material seems to be an 
understudied problem in ALL research (Linzen & Gallagher, 2017, p.26).

The paper is organised as follows: Section 2 outlines the details of our study. We first 
introduce the logic of the original study by Linzen and Gallagher (2017) before we present the 
materials (2.1) of the two artificial languages for our Mandarin and German language groups, 
followed by the methodological details of our study (2.2). Section 2.3 introduces the variables of 
interests and their implementations. In this section, we will introduce the language-dependent 
variables (Section 2.3.1) and language-independent variables (Section 2.3.2). Section 3 presents 
our results for German and Mandarin speakers. Section 4 reviews our findings regarding the 
original identity effect, task effects, and L1 and AL effects before closing with a section on 
implications for learning research. Section 5 concludes the paper.

2 The present study
We adopted Linzen and Gallagher (2017)’s ALL experiment in which the authors detected 
learning of an identity pattern after short exposure.

Linzen and Gallagher (2017) tested English speakers. In their experiment participants 
listened to artificial language input during training. During the test, they were asked if unattested 
and attested items could be accepted as part of the artificial language. Specifically, we adapted 
their version 2a of the experiment (Linzen & Gallagher, 2017, p.10), in which the pattern to be 
learned is a probabilistic abstract generalization and does not make reference to the phonetic 
properties of any particular sound: We adjusted stimuli and training length to our needs. The 
artificial language input in training was ambiguous in the sense that half of the items conformed 
to an identity constraint; the other half did not. Items conforming to the identity constraint 
contained an identical consonant in each consonant position. We refer to these CaVCaV items 
as items with identical C_C_ frames. Items not conforming to the identity constraint contained 
different consonants in each consonant position. We refer to these CaVCbV items as items with 
non-identical C_C_ frames. During the test, participants were asked if attested and unattested 
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items (with the same number of identical and non-identical C_C_ frames) could be accepted 
as part of the artificial language. Note that in this design there is not a correct or an incorrect 
answer to whether a given stimulus belongs to the artificial language exposed to the participants 
since there were equal number of identical and non-identical C_C_ frames during the training 
and test phase.1 Despite equal input of identical and non-identical C_C_ frames, participants were 
more likely to accept the identity pattern as compared to a non-identical items. This captures 
the preference with which participants are willing to take up patterns and generalise them to 
new material. While the input contains more identical nonwords than non-identical nonwords 
relative to chance, participants show rapid learning of this phonotactic pattern, namely the 
overrepresentation of identical nonwords. This tendency to overestimate the identity pattern as 
part of the new language is what Linzen and Gallagher (2017) refer to as identity effect.

The present study aims at extending the examination to two radically distinct languages and 
uses the method as a test case to investigate the role of the lexicon of both the native language 
and the AL in ALL. For the present study we created a Mandarin and a German artificial language 
version. Using a language-adapted AL lexicon we familiarised German and Mandarin speakers 
with an artificial language and aimed to (1) replicate the original effect in two other languages, 
and (2) also track if and how L1 and AL lexical knowledge contributes to our learners’ behaviour. 
We investigated several types of lexical knowledge that could have influenced performance in 
an ALL task.

To measure the influence of a learner’s L1 (German/Mandarin) and AL (the training 
nonwords) on the task, we selected three lexical variables that reflect different types of lexical 
knowledge. We investigated the influence of (1) activation diversity, a measure of distributions 
of co-occurring features across the lexicon during lexical selection, (2) neighbourhood density, a 
classic lexical variable for modelling analogical learning, and (3) the probability of the specific 
C_C_ frame, a variable which highlights a potential attention effect by the participants to the CVCV 
template as it was used by all of the nonwords in the experiment. While the first two variables 
control the artificial languages’ similarity to the learners’ L1 in a general way, the last variable, 
consonant frame identity, controls more directly for AL similarity. Consonant frame probability 
is a control variable that looks at the specific pattern in the artificial item and tells us about 
how often its specific pattern is found in the L1 lexicon. Neighbourhood density (the measure 
resulting from an Generalized Neighbourhood Model (GNM)) and activation diversity (the Naive 
Discriminative Learning (NDL) measure) look at L1 similarity more generally. Together they 
enable us to examine the role of the lexicon at different levels of specificity – over any general 
dimensions (vowels, consonants, or features) or over the target AL pattern.

 1 Attested items consisted of attested consonant frames but different vowels, hence no single test item resurfaced in 
test after training. While one could argue that accepting a test item with an attested frame is a correct answer, this 
categorisation of correctness does not influence how we analyse the data.
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In sum, the present study is a cross-linguistic study on learning an identity constraint while 
controlling for language-specific variables and as such it addresses several questions of interest 
and is applicable to other ALL studies as well. First, we aim to see whether the effect under 
investigation (here: identity) is a robust effect even if we take language-specific variables into 
account. By including L1 variables we test whether the identity effect originates from or may 
be masked by from the speakers’ L1. By including AL variables we test whether the identity 
effect originates from or may be masked by the design of the artificial language used in the 
experimental learning situation. Only if the effect under investigation turns out to be robust, 
even when we take into account language-specific effects, we can argue for its existence. Second, 
if the effect under investigation turns out to show up consistently across language populations 
we are able to argue for its universality.

In the following sections we describe the materials (Section 2.1) and the technical details of 
the method (Section 2.2), and finally we report how we prepared for the evaluation of language-
dependent and language-independent variables under investigation (Section 2.3).

2.1. Materials
We created a Mandarin and German artificial miniature lexicon, out of which we chose individual 
training and test items for the ALL experiment. All items had a CVCV syllable structure with 
identical or non-identical consonant frames and tense language-specific vowels. The lexicon 
contained exposure items as well as attested and unattested test items. Half of these items 
conform to an identity constraint consonants and the other half does not.

Linzen and Gallagher (2017) tracked the learning of their artificial language with different 
amounts of exposure. The effect became apparent after only little exposure with few tokens per 
exposure item type. The identity effect was found in attested items after using two exposure 
tokens per type and in unattested items after using four exposure tokens per type (Linzen & 
Gallagher, 2017, experiment 2a). We therefore decided to use an equivalent set with three 
exposure sets to investigate influences of the native as well as the artificial lexicon.

Participants were assigned to one of four experimental groups – there was a German as 
well as a Mandarin version, and a frequent and an infrequent condition per language. For each 
group we sampled experimental stimuli from a group-specific item pool. In what follows we 
explain how stimuli for these pools were created before we turn to the question how stimuli were 
distributed during the experiment.

2.1.1 Stimuli creation
For the Mandarin and German version of the experiment we used a subset of language-specific 
consonants, since selecting a set of overlapping consonants of two typologically distinct 
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languages would severely limit the number of possible nonwords, a problem that was illustrated 
in Figure 1. Our aim was to prepare four miniature lexicons: Two per language, one where 
preselected consonant frames were relatively frequent and one where consonant frames were 
relatively infrequent according to the lexical statistics of the native language (L1). Token 
frequency was used as a proxy for L1 wordlikeness to select consonant frames for each subgroup2. 
The frequency of consonant frames was estimated by calculating their Zipf values (a normalised 
frequency scale: log10 of the frequency per million plus three) (van Heuven, Mandera, Keuleers, 
& Brysbaert, 2014) in language-specific tokens.3 Each participant was presented with either the 
more frequent frames or the less infrequent frames of one language.4

The consonants used to construct the consonant frames were counterbalanced across two 
conditions: Identity (identical vs. non-identical frames) and attestedness (attested vs. unattested 
frames). Concretely, two non-overlapping sets of consonants were used to construct the consonant 
frames, with one set being used to construct unattested, identical frames and attested, non-
identical frames (e.g., [m, ph, h, kh] in high frequent German condition) and another set being 
used to construct attested, identical frames and unattested, non-identical frames (e.g., [b, th, 

n, ʁ] in high frequent German condition). See Table 1, which summarises consonant frames 
used in the two languages, German and Mandarin, together with their frequency status. For half 
of the participants we set up a corresponding item set in which consonant frames of the exposure 
items/attested test items and unattested test items were interchanged.

Equipped with language-specific consonant frames we generated all possible CVCV sequences 
using the Mandarin vowel set { aː, ai, au, əi, iː, eː, oː, uː, ɤː, əu, yː } and 
the German vowel set {aː, eː, iː, oː, uː}.5 Four constraints were applied to come up with 
a final set of items. First, existing words were excluded. Second, we avoided token similarity by 
ensuring the first vowel of the items was not identical (we avoided stimuli such as naːno, naːne). 
Third, we avoided token similarity by ensuring the second vowel of the items was not identical 
(we avoided stimuli such as naːno, neːno). Fourth, we avoided vowel metathesis patterns across 
items (we avoided stimuli such as naːno, noːna). In the few remaining cases when we had to pick 
the violated forms, we picked the one that did not share a vowel at a certain position with the 

 2 In principle, type frequency and other frequency-related lexical estimates can also be used. We encourage the readers 
to examine other estimates in their individual studies.

 3 Consonant frames not found in our lexicons are smoothed to have a Zipf value of 1.
 4 This high-low frequency condition is highly correlated with the consonant frame probability variable and, in fact, 

they are the most correlated pair of variables, with R=0.3 for German and R=0.6 for Mandarin. Furthermore, the 
high-low frequency condition is less fine-grained than the continuous consonant frame probability variable. There-
fore, this high-low frequency condition was not considered as a fixed effect in the statistical models.

 5 For both languages, tense vowels were chosen to best match the L&G’s study, which also chose tense vowels that are 
either long vowels or diphthongs. The number of nonwords that can be generated for Mandarin using only long vow-
els were too small to match the number of German nonwords; therefore, diphthongs were also chosen for Mandarin.
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test item. If we had still no choice, we chose the one where the second vowel was identical to 
the test item. Of the remaining items we generated their syllable-bigram6 probability and picked 
the four CVCV tokens evenly across the spectrum of syllable-bigram probability. Mandarin is a 
tonal language with four lexical tones which are the high tone (tone 1), the rising tone (tone 
2), the low tone (tone 3), and the falling tone (tone 4). Mandarin items were realised with the 
falling tone (tone 4) on both syllables. The tone sequence 4–4 is the most common disyllabic 
word forms in Mandarin (Lin 2016). German items were trochaic. A stressed penultimate before 
an unstressed ultimate corresponds to the most common word forms in German (Wiese, 2000). 
An example item set for one German participant7 is illustrated in Table 2; a full list of artificial 
items for both German and Mandarin speakers in all groups can be found in Tables 10, 11, 12, 
and 13 of the appendix.

The two miniature item sets were recorded separately – one by a native speaker of Mandarin 
(Henan dialect) and one by a native speaker of Standard German. Items were recorded in the 
Mandarin carrier sentence “请你把 ___ 再说一遍” (Pinyin: qing3 ni3 ba3 ___ zai4 shuo1 yi1 bian4.) 
(en: Please say ___ once again.) or the German carrier sentence “Ich habe noch nie ___ gehört.” (en: I 
never heard ___ before.). The stimuli were recorded in an anechoic booth in the phonetics laboratory 
at Heinrich-Heine University Düsseldorf. We extracted stimuli and scaled their intensity to 70 dB 
using Praat (Boersma & Weenink, 2018).

2.1.2. Stimuli distribution
For each participant, there was an individual training and test set consisting of stimuli from the 
experimental group-specific item pool (frequent German, infrequent German, frequent Mandarin, 
infrequent Mandarin). For each of the language-specific eight attested consonant types (four 
identical and four non-identical), each participant was given three randomly selected tokens 
per type (out of four tokens) as the training set, and the remaining fourth token was used as 
an attested test item. For each of the eight unattested consonant types (four identical and four 
non-identical), each participant was given one randomly selected token per type (out of four 
tokens) as part of the unattested test items. In total, each participant was given 24 tokens (three 
tokens x eight attested consonant types) in the training set, eight tokens (one token x eight 
attested consonant types) in the attested test set, and eight tokens (one token x eight unattested 
consonant types) in the unattested test set. Presentation order of exposure and test items was 
randomised within the experimental phase.

 6 A syllable bigram consists of two consecutive syllables.
 7 The table shows a simplified version of items not using diacritics for reasons of readability.
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 Exposure/Test 
(attested) 

Test (unattested)

 Frame TokenZipf Frame TokenZipf

German High 
 frequency

Identical b_b_ 5.506 m_m_ 5.294
th_th_ 5.047 ph_ph_ 5.219
n_n_ 4.500 h_h_ 4.283
ʁ_ʁ_ 4.015 kh_kh_ 4.085

Non-identical m_kh_ 3.731 ʁ_th_ 5.158
h_ph_ 3.519 b_ʁ_ 5.127
ph_m_ 3.072 th_n_ 3.984
kh_h_ 1 n_b_ 2.072

Low 
 frequency 

Identical g_g_ 3.644 v_v_ 2.373
l_l_ 3.563 z_z_ 1.595
t͡s_t͡s_ 1.896 j_j_ 1
f_f_ 1 d_d_ 1

Non-identical z_d_ 3.887 l_g_ 5.274
d_v_ 2.709 t͡s_l_ 4.943
v_j_ 1 f_t͡s_ 1
j_z_ 1 g_f_ 1

Mandarin High 
 frequency 

Identical t_t_ 5.711 th_th_ 5.391
kw_kw_ 4.784 xw_xw_ 4.809
w_w_ 4.559 l_l_ 4.517
s_s_ 4.055 t͡sw_t͡sw_ 4.234

Non-identical xw_l_ 5.829 t_w_ 4.755
l_t͡sw_ 3.181 w_kw_ 4.286
th_xw_ 3.107 s_t_ 3.783
t͡sw_th_ 2.319 kw_s_ 3.190

Low 
 frequency

Identical khw_khw_ 3.976 ph_ph_ 4.052
t͡shw_t͡shw_ 3.087 ʈ͡ʂhw_ʈ͡ʂhw_ 3.743
pj_pj_ 2.905 nj_nj 3.280
ᶎ_ᶎ_ 2.753 thw_ thw_ 3.030

non-identical thw_nj_ 4.306 khw_ᶎ_ 2.6784
ph_thw_ 3.456 pj _t͡shw_ 2.1733
nj_ʈ͡ʂhw_ 1 t͡shw_khw_ 1
ʈ͡ʂhw_ph_ 1 ᶎ_pj_ 1

Table 1: Consonant frames and their lexical distributions in L1 lexicons.
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Training Test

Attested Unattested

Identical C_C beːbo baːbu boːbi buːba khoːkhi

thiːtha theːthu thoːthi thaːtho haːhu

naːni noːnu nuːne neːno pheːpha

ʁeːʁa ʁiːʁo ʁuːʁi ʁaːʁu miːmu

Non-identical C_C khoːha kheːhi khiːhu kːhuːho boːʁu

haːphi hiːphu huːpho hoːphe ʁiːthu

phaːmi phuːme phoːma pheːmu theːni

moːkha muːkhe maːkhi meːkho noːba

Table 2: Illustration of one item set presented to a participant in the frequent German group.

2.2. Methods
Experiments were run online using Experigen (Becker & Levine, 2013). Participants were asked 
to wear headphones. During training, every training item was played once. During the test, 
participants were asked if testing items could be accepted as words from the new language. 
The instructions used by Linzen and Gallagher (2017) were translated with minor variations 
into German and Mandarin Chinese and can be found in Appendix A. After the experiment, 
participants were asked to fill out a short demographic background sheet asking for age, gender, 
and language history.

Participants were recruited via social media platforms and mailing lists. They provided 
informed consent and they were offered the chance to enter a raffle to win a gift voucher. Two 
hundred and thirty-two native German adults took part in the German experiment. Their mean 
age was 31.5 years, ranged between 18 and 70. One hundred and thirty-six were women, 50 
were men, two identified as other. Forty-four participants did not provide information about 
their gender. In the Mandarin version of the experiment, 219 Mandarin native speakers took 
part, with a mean age of 21.5, ranging from 15–55. Ninety seven were women, 95 were men, and 
27 did not provide gender information.

2.3. Variables under investigation
For the language-dependent variables, we computed them with respect to their L1 and AL. For 
the nonwords in each version of the experiment, the L1 variable was computed over the full 
L1 lexicon (German or Mandarin), and the AL variable was computed over the corresponding 
artificial language that was exposed to the participants. Thus, the AL variables were computed 
over the individual artificial exposure lexicon which was much smaller than the L1 lexicon.



16 Tang and Baer-Henney: Modelling L1 and the artificial language during artificial language learning

To better estimate the L1 lexical knowledge of our participants, we chose frequency lists 
compiled using subtitle texts, namely SUBTLEX-DE (Brysbaert et al., 2011) and SUBTLEX-CH 
(Cai & Brysbaert, 2010) for German and Mandarin respectively. This was motivated by the fact 
that lexical frequencies derived from subtitle texts have consistently shown to outperform those 
from other genres in capturing behavioural responses in psycholinguistic tasks across languages 
(Brysbaert & New, 2009; de Chene, 2014; Keuleers, Brysbaert, & New, 2010; Tang, 2012; Tang 
& de Chene, 2014; Tang & Shaw, 2021). These reference lexicons were then enriched with 
IPA. The German lexicon was created by combining the lexical entries in the German section 
of CELEX (Baayen, Piepenbrock, & Gulikers, 1995) with SUBTLEX-DE’s frequency estimates. 
The Mandarin lexicon was created by transcribing the lexical entries in SUBTLEX-CH with 
CEDICT (Denisowski, 1997) and the pinyin pronunciation guide outlined in Duanmu (2007).8 
Surprasegmental information was removed for German but not for Mandarin because German 
stress has a low lexical functional load (Surendran & Niyogi, 2003; Tang, Chang, et al., 2022) and 
is predictable (Féry, 1998) compared to Mandarin tones. ALL studies have consistently found that 
learners are sensitive to phonological features in the training stimuli; therefore, we compute our 
wordlikeness variables on the featural level as opposed to on the segmental level (Durvasula & 
Liter, 2020; Finley, 2022; Linzen & Gallagher, 2017) In addition, we also investigated a number 
of language-independent factors such as trial number, reaction time, and the original finding of 
the acceptability rate of identical patterns (Linzen & Gallagher, 2017). We controlled for whether 
C_C_ frames were attested or unattested during training.

2.3.1. Language-dependent variables
Three language-dependent predictors were considered and are described in detail in the next 
paragraphs. As measures of wordlikeness, we used activation diversity and neighborhood density, 
two variables that are relatively uncorrelated (Milin, Feldman, Ramscar, Hendrix, & Baayen, 
2017). Third, we considered consonant frame probability.

Activation diversity Assessing activation diversity of the nonword test stimuli used is one way 
to account for wordlikeness of our stimuli. In this way we are able to control for how similar 
the stimuli are to the words of the native lexicon of the speaker, and we are able to control for 
how similar the stimuli are to the nonwords of the artificial training lexicon of the speaker. The 
following section describes how the measures are assessed. Activation diversity is a measure 
resulting from an Naive Discriminative Learning (NDL) model. NDL incorporates the Rescorla-
Wagner learning rule (Rescorla & Wagner, 1972).

 8 We opted to use the surface representation for both German and Mandarin. This is motivated, in part, by how the 
underlying representations of Mandarin Chinese are very theory-dependent and cannot be separated into syllable 
parts very easily (Duanmu, 2007).
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In this framework the learning process consists of cues (the set of input units) and outcomes 
(the set of output units). What is a cue and what is an outcome is specified in the specific learning 
scenario. Cues and outcomes can either be present or be absent. The learning rule captures the 
change in association strength between cues and outcomes. Presence and absence of cues and 
outcomes determine strength of associations in the network and – as a consequence – learnability 
of the outcomes. If a cue is not present in a learning event, then no change in association strength 
is made. If a cue and an outcome are both present, then the association strength increases. If a 
cue is present but an outcome is not present, then the association strength decreases. If a cue 
or an outcome has not been encountered before, then the association strength does not change. 
To put simply, the strength of association between a cue and an outcome depends on whether 
the cue is predictive of the outcome. Cues compete for predictive values based on whether a cue 
successfully predicts an outcome or not. Please see Appendix B for the mathematical details of 
the Rescola-Wagner equations (Rescorla & Wagner, 1972).

The Rescorla-Wagner learning rule has been shown to provide a psychologically plausible 
model of human learning in a number of lexical and phonological processing tasks. In lexical 
decision tasks, NDL-derived variables have been found to outperform classical lexical-
distributional measures (Milin et al., 2017). NDL was able to model morphological variations 
in Russian and provide complementary information to other modelling approaches (logistic 
regression and decision trees and random forest) (Baayen, Endresen, Janda, Makarova, & Nesset, 
2013). Crucially, it has also been applied in ALL studies to understand the mechanism underlying 
language learning (Vujović, Ramscar, & Wonnacott, 2021). Recent studies have shown that 
latent variables derived from a cue-to-outcome matrix can capture behavioural responses in 
a number of psycholinguistic tasks, such as lexical decision and word naming, similarly well 
compared to a number of classic psycholinguistic variables, such as token frequency, family size, 
and phonotactic probability.9

In lexical processing, typically an NDL model is trained on certain types of sublexical cues 
(e.g., bigrams of letters or acoustic characteristics), (input units) and words as outcomes (output 
units) (see Milin et al., 2017; Nixon, 2020). It is designed to discriminate between words on the 
basis of sublexical cues. The model results in a cue-to-outcome matrix and each cell in the matrix 
contains the weight of a specific cue activating a specific outcome. As the model is being exposed 
to each word and its corresponding cues, the activation weights are updated accordingly. In 
this way, the NDL model represents the mental lexicon, which is dynamic and flexible. The 
matrix then offers the possibility to check the wordlikeness of new bigram combinations. Thus, 

 9 For examples of comparisons between NDL-derived latent variables and traditional psycholinguistic variables, please 
review Hendrix (2016) for a series of studies on word naming, compound reading, and picture naming tasks in Eng-
lish, and Pham and Baayen (2015) for similar comparisons in a lexical decision task in Vietnamese.
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activation values can be derived, stored as L1 and AL activation diversity measures, and used as 
an additional predictor in our final model.

Thus, the latent variable that is of our particular interest is the activation diversity given a set 
of cues. In the cue-to-outcome matrix, each cue is a vector of the same length as the total number 
of outcomes (nonwords for the AL exposure lexicon, and words for the L1 lexicon).

Unlike previous studies such as Milin et al. (2017), the cues of our NDL models were 
not computed over bigram letters but rather over bigram phonological features. The feature 
specification of each phone was taken from the PHOIBLE feature chart (Moran, McCloy, & Wright, 
2014). Following the framework of autosegmental phonology (Goldsmith, 1976), the bigrams 
were computed separately over segment tiers and tonal tiers. While segments were broken down 
into features, tones were not, and the tone values were used to compute tonal bigrams directly. 
Concretely, this means that in our assessment, we used featural bigram representations such as 
a bigram of features [+syllabic] followed by [-syllabic] as cues to check against the outcomes.

For each test nonword we assessed the activation diversity for L1 and AL. The ndl2 library 
(version 0.1.0.9002) was used to implement our NDL models (Baayen, Milin, Đurđević, Hendrix, 
& Marelli, 2011; Shaoul et al., 2015). With respect to the L1, we first trained an NDL model 
using an L1 lexicon to obtain a cue-to-outcome matrix, where cues are bigram features and 
the outcomes were real words of German or of Mandarin. To then obtain the L1 activation 
diversity value for each nonword stimulus in the testing phase, we converted each nonword into 
a featural bigram representation and looked up the activation values that correspond to each 
featural bigram cue using the cue-to-outcome matrix.10 The sum of the absolute values of the 
activation values for all the cues of a nonword is its activation diversity value. With respect to 
the AL activation diversity, the only difference is the lexicon that the NDL model was trained 
on first. Instead of a German/Mandarin lexicon, an NDL model was trained using the individual 
miniature AL lexicon which contains only the exposure items per participant. Thus, for each test 
nonword we computed an L1 activation diversity value and an AL activation diversity value. In 
this way, we interpret activation diversity as a measure of wordlikeness of a nonword. A test 
nonword that is very wordlike with respect to the reference lexicon (L1 or AL) would have cues 
with high activation values in the cue-to-outcome matrix and thus would have a high (L1 or AL) 
activation diversity value.

 10 Bigram features were chosen for several reasons. First, in phonology, it is not practical to use substrings longer than 
bigrams or trigrams (Albright, 2009). While in principle, substring of any size can be used, due to sparsity issue, the 
number of logical combinations of ngrams would be large and a majority of the combinations will not be attested 
(Jurafsky & Martin, 2008). Since we would compute activation diversity over a trained AL lexicon which contains 
only 24 words, using trigrams would yield sparse and uninformative estimates of activation diversity. Second, tri-
gram phonotactic information is already captured in a separate variable, consonant frame probability, as described 
later in this section, which directly captures the phonotactic pattern of identical consonants in C_C_ frames that spans 
across three adjacent segments.
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To illustrate the NDL procedure to gain activation diversity values, a miniature example 
is provided in Table 3. Table 3 shows that how L1 activation diversity values for the two test 
nonwords mamo and nuno were computed for a miniature German lexicon consisting of three 
words mami (engl. mummy), mama (engl. mum) and dodo (engl. dodo). Outcomes are the three 
words and cues in our example are bigram segments.11 The hypothetical test nonwords mamo 
and nuno are broken down to cues. To evaluate the activation level of each test nonword, we 
computed the sum of the weights in the vectors for each outcome.12 Based on the present model, 
mamo receives a higher activation diversity than nuno.

Table 3: Illustration of how example test nonword mamo and nuno cues are checked against the 
matrix of the miniature lexicon.

Neighbourhood density While activation diversity has been shown to capture the same amount of 
variance as a number of psycholinguistic variables in psycholinguistic tasks, neighbourhood density 
was found to be the least correlated variable with activation diversity (Milin et al., 2017, Table 
5). Neighbourhood density is a classic lexical variable that reflects analogical learning (Nosofsky, 
1986). It is known to affect the speech production, the speech perception, and the acceptability 
judgement of nonwords. Nonwords with a high neighbourhood density are more accurate in nonword 

 11 For illustration purposes, segments were used as cues. In the actual model, phonological features were used with 
the segmental bigrams being converted into featural bigrams. For instance, the featural bigram representation of 
the [+/–syllabic] feature for the first three segmental bigrams ma, am, and mi would be [-syllabic, +syllabic], 
 [+syllabic, –syllabic], and [–syllabic +syllabic], which serve as separate cues. Note that [] is used to denote a 
sequence of featural properties across multiple segments rather than a single feature matrix. With N number of phon-
ological features, a nonword of length L would yield N×(L-1) number of featural bigram cues.

 12 For illustration purposes, the activation values in the example were highly simplified to be either 1s or 0s.
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repetition (Gathercole, 1995; Munson, Kurtz, & Windsor, 2005), take longer to reject in auditory 
lexical decision (Chuang et al., 2019; Luce & Pisoni, 1998), and are more acceptable as a real word 
in acceptability judgement (Bailey & Hahn, 2001; Harris, Neasom, & Tang, In prep) than nonwords 
with a low neighbourhood density. More specifically, in first and second language acquisition, 
words with a high neighbourhood density are better acquired than those with a low neighbourhood 
density (Coady & Aslin, 2003; Storkel, Armbrüster, & Hogan, 2006). Neighbourhood density is a 
measure of wordlikeness of a nonword. We therefore hypothesise that neighbourhood density of a 
nonword could influence whether it would get accepted as a word of the artificial language.

The GNM (Bailey & Hahn, 2001) was used to estimate the neighbourhood density of nonwords. 
GNM compares each nonword with all the words in the lexicon weighted by the phonological 
distances between each nonword and the real words and the token frequency of the real words.13 
The advantage of GNM over a strict one-segment difference neighbourhood density metric is 
that it takes into account the whole lexicon (not just words that are immediate neighbours) 
while adjusting for a neighbour’s importance by how distant it is from the nonword (the more 
distant it is, the less important it is) and how frequent it is (the lower the frequency, the lower 
the importance). The gradient nature of GNM is particularly advantageous for computing over 
small lexicons (e.g., the AL lexicons) as otherwise many nonwords would have zero number 
of immediate neighbours. To determine the phonological distance between the nonwords and 
the real words, we first computed the phonetic similarities between all phones by taking the 
proportion of matched features over all features using the phonological distinctive feature system 
by PHOIBLE (Moran et al., 2014).14 We then used these phonetic distances as weights to compute 
the weighted Levenshtein distance (Levenshtein, 1966) between two words.

For instance, to compute the neighbourhood density of a nonword, mamo, over a German 
lexicon, mami, which is a frequent word of German (engl.: mummy), will contribute more than 
dodo (engl.: dodo), which is an infrequent word of German. The reason to reward the nonword 

 13 The GNM model proposed by Bailey and Hahn (2001) has a number of free parameters, which are obtained by post-
hoc model fitting using regression. To reduce the number of parameters, we chose to use a monotonic frequency 
weighting scheme, as opposed to a quadratic frequency weighting scheme used in Bailey and Hahn (2001). Further-
more, we decided against using post-hoc model fitting to obtain the free parameters given the high computational 
demand; instead we opted to use existing published parameters by the study. The cost parameter for insertion and 
deletion was set to 0.7 and the sensitivity parameter was set to 1/0.1739.

 14 Our phonetic distance metric differs from the one used by the GNM model reported in Bailey and Hahn (2001). In 
the original model, distance was computed using a metric based on shared natural classes (Frisch, 1996), while our 
metric is a normalised number of feature mismatches. In a separate study by Bailey and Hahn (2005), they evaluated 
how well can a) feature mismatching, b) Frisch’s metric, and c) empirical phoneme confusability in a number of word 
similarity judgement tasks, and they found that feature mismatching performed better than Frisch’s metric. Given the 
findings of Bailey and Hahn (2005), we decided to employ a feature mismatching metric over Frisch’s metric for our 
study. For Mandarin, the Chao tone digits was used to describe the tones (Tone 1: 55, Tone 2: 35, Tone 3: 21, Tone 
4: 51) in terms of their tone levels, such that each tone is a vector of length two; the distance between two tones was 
the Euclidean distance of the two vectors.
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mamo with a relatively high neighborhood density value is because the nonword mamo is 
phonologically closer to a frequent real word mami than to an infrequent real word dodo. This 
means the nonword mamo receives a strong neighborhood support by being phonologically close 
to a highly frequent real word mamo.

Consonant frame probability The experimental paradigm set out to test whether a consonant 
identity pattern is preferred over a non-identity pattern with lexical items of either the CaVCaV 
or the CaVCbV pattern. This could direct the participants’ attention to the consonant frame C_C_, 
and therefore enhance the potential effect of lexical statistics over the consonant frames. For this 
reason, we included the probability of C_C_ as an additional lexical variable for examination. The 
probability of C_C_ is the number of word types with a given frame C_C_ divided by the number of 
all CVCV word types.15 The choice of using type frequency over token frequency was to minimise 
the potential overlap with the activation diversity variable which was trained on token-based 
phonotactic information. Unlike the variables activation diversity and neighbourhood density, 
this was computed only with respect to the L1 lexicons (Brysbaert et al., 2011; Cai & Brysbaert, 
2010) because the number of items with the same consonant frame was matched across frame 
types in the AL lexicons. Thus there is no variation with the probability of word types.

2.3.2. Language-independent variables
Three language-independent predictors were considered: Trial number, response time, and 
identity.

Trial Number Trial number is the number of the trial in a testing session. It was included to 
evaluate the effect of recency of the exposure of the artificial language, as we know that recently 
exposed grammatical structure are preferred (Luka & Barsalou, 2005).

We hypothesised that the participants would more likely accept a nonword as a word of the 
artificial language at the beginning of the testing session (a low trial number) than at the end of 
the session (a high trial number). In other words, as the experiment progressed (from a low trial 
number to a high trial number), the probability of a Yes response, which denotes accepting a 
nonword as a word of the artificial language, decreases.

Response Time Response time in this study is the time it takes to respond to each nonword. 
In many behavioural tasks response time is included as a control for the well-known trade-
off between speed and accuracy (e.g., Davidson and Martin (2013); Heitz (2014)). This is not 

 15 Our decision to use only CVCV words in the L1 lexicons is based on the fact that participants were exposed exclus-
ively to CVCV nonwords as part of the ALL experiments. In principle, one could explore other estimates of consonant 
frame probability such as using all words, all sequential onsets, all CV.CV syllable sequences, or all CV.CV sequences 
at initials of words. We encourage the readers to examine other estimates in their individual studies.
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how we should interpret response time because there is not a correct or an incorrect answer 
to whether a given nonword belongs to the artificial language exposed to the participants. We 
hypothesise that the longer the response time, the probability of a Yes response, which denotes 
accepting a nonword as a word of the artificial language, decreases.

Identity In the original study by Linzen and Gallagher (2017) in English, learners were shown 
to display an effect towards accepting more nonwords with an identical consonant pattern Ca_Ca_, 
than those with a non-identical consonant pattern Ca_Cb_ as words of the artificial language. 
Their learners were exposed to an artificial language with an overrepresentation of identical 
consonant frames relative to chance, and as a consequence learners exhibited a preference for 
identical consonant frames over non-identical consonant frames, which demonstrated learning 
of the phonotactic pattern. We expect learning of this identity pattern as well. Furthermore, a 
successful replication of this effect in our experiments would serve as indirect evidence that our 
experiments are successful replications of the original study in two new languages, thus lending 
validity to other findings from our study.

As in many ALL studies, Linzen and Gallagher (2017)’s learning effect, the identity effect, 
was tested for its generalisability. This was done by means by evaluating whether the identity 
effect holds in both familiar items (nonwords with consonant frames attested in the exposure 
phase) and unfamiliar items (nonwords with consonant frames not attested in the exposure 
phase). The evaluation of the identity effect in the unattested items is crucial since it enabled 
the researchers to investigate not only memory but also the generalisability of the observed 
patterns. Linzen and Gallagher (2017) found the identity effect was robust across both attested 
and unattested items and there was no significant difference between the two sets of items. The 
generalisability of the observed identity effect relies on the assumption that the unattested items 
do not resemble the exposure items in the consonant frame type; therefore, the observed identity 
effect is not due to the participant’s experience of the exposure items. However, our AL variables 
and the time course variables in fact challenge this rigid assumption in two ways. First, while 
the unattested items did not overlap with the exposure items in their consonant frames at the 
segmental level, the same cannot be said at the individual featural level for both the consonant 
frames and indeed the vowels. Second, the time course variables evaluate the potential recency 
effect the participants have with respect to the exposure items. Therefore, we aim at jointly 
evaluating the identity effect with the AL and the time course variables. This would allow us to 
evaluate the role of exposure items in the processing of the unattested nonwords and see if the 
effect of identity would remain significant.

2.4. Model procedure
Linear mixed-effects logistic regression models were fit to the responses conducted using the 
lme4 package in R (Bates, Mächler, Bolker, & Walker, 2015; R Core Team, 2013). For each of 
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the experiments, two models were fitted over the nonwords with attested C_C_ frames and the 
nonwords with unattested C_C_ frames respectively. The primary focus of our study is to evaluate 
whether or not lexical statistics such as the ones we outlined in Section 2.3 have an effect 
on the behavioural responses of an ALL experiment. To evaluate the effect of lexical statistics, 
four models were fitted over the German group’s attested nonwords (Model 1) and unattested 
nonwords (Model 2), the Mandarin group’s attested nonwords (Model 3) and the unattested 
nonwords (Model 4), predicting either a Yes or a No (base-level) response. In total, the four 
models were fitted with the predictor variables outlined in Section 2.3 as fixed effects and per-
speaker and per-item random intercepts to allow for idiosyncrasies of individual speakers and 
items, as is typical of psycholinguistic research.

The regression structure of the initial models is shown below (note that the language-dependent 
predictors have either ‘L1’ or ‘AL’ in parentheses referring to their respective languages. L1 is 
referring to either German or Mandarin and AL is referring to an artificial language).

Response (Yes/No) ∼ Identity + Activation diversity (L1) + Neighbourhood density (L1) + 

Activation diversity (AL) + Neighbourhood density (AL) + Consonant frame probability (L1) 

+ Trial number + Response time + (1 | Participant) + (1 | Item)

Following standard practice in regression modelling, the continuous variables were z-score 
normalised (e.g., Baayen, 2008, Sec. 2.2). Z-score normalization allows us to compare the 
relative strength of our continuous predictors directly. The distributions of activation diversity 
and response time were skewed; therefore, they were log-transformed (base 10) before z-score 
normalization. Neighbourhood density was already on a log scale. Our categorical predictor 
Identity was sum-coded (Wissmann, Toutenburg, & Shalabh, 2007) with non-identical as the 
base level. The dependant variable, which is the participants’ response (Yes/No), was coded with 
‘No’ as the base level.

To evaluate potential collinearity issues, we computed the condition number (Belsley, Kuh, 
& Welsch, 1980), using the function collin.fnc in the library languageR (Baayen, 2013). Our 
variables have a condition number of 2.09 and 3.12 in Study I (German) and Study II (Mandarin) 
respectively. According to Baayen (2008), these values indicate no issues of collinearity.

These initial models were then simplified following a step-down, data-driven model selection 
procedure which compared nested models using the backward best-path algorithm of Gorman 
and Johnson (2013), making use of the anova() function and likelihood ratio test provided by R. 
After the step-down procedure, by-participant random slopes for the optimal fixed effects were 
fitted to ensure that our estimates of the effects of these factors will be relatively conservative. 
The random slopes were kept only if they are justified by the data and if there are no singularity 
or non-convergence issues. It has been suggested that the likelihood ratio test can be anti-
conservative (Luke, 2017) when used as a measure of statistical significance. We, therefore, 
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chose a relatively liberal threshold of alpha, α = 0.1, to be conservative in our model selection 
procedure, preferring to include potentially relevant predictors in the final model and their 
statistical significance will then be evaluated using bootstrapping. The final model will be 
presented in the next section.

The statistical significance of the individual predictors in all the models was evaluated by 
bootstrapping. Bootstrapping was carried out using the bootmer function in the lme4 library. 
One-thousand bootstrap simulations were performed for each model. Bootstrapped p-values and 
confidence intervals at 95% were computed for each predictor in each model. We follow the 
conventional alpha-level of 0.05 for significance. Therefore, we will refer to any p-value below 
0.05 as “significant” and any p-value greater than 0.05 but smaller than 0.1 as “near-significant”.

In the following sections, we will first present the results of the planned analyses of Study I 
(German) and of Study II (Mandarin). In addition to these planned analyses, we will present the 
results of two exploratory analyses on the effect of attestedness and its interactions motivated by 
the results from Study I and Study II. Readers should note that these models are exploratory and 
their results should be interpreted with caution. This is because a) the effect of attestedness is not 
our study of interest, b) we have no a-priori reasons to examine the interactions of our many fixed 
effects and their random slopes, and c) we wanted to avoid making our models too complex to 
interpret and risk overfitting the small data that we have (approx. 1,000 data points per model).

3. Results
3.1. Study I: German
3.1.1. Study I: German: Attested
Table 4 summarises the fixed effects in Model 1, which is fitted over the German attested 
nonwords. The model structure of the best model is shown below.

Response (Yes/No) ∼ Identity + Activation diversity (L1) + Neighbourhood density (L1) 

+ Neighbourhood density ( AL) + Consonant frame probability (L1) + Trial number + 

Response time + (1 + Response time | Participant) + (1 | Item)

We first examine the language-independent variables. All three of the language-independent 
variables were highly significant in the expected directions: These are Identity , trial number, and 
response time. The effect of identity was in the same direction as the original study for English, 
such that the nonwords with identical consonant were more likely to be accepted. The effect of 
trial number and response time suggested there is a recency effect – the higher the trial number 
and the longer the response time, the lower the likelihood of acceptance. In other words, the more 
recent a nonword was processed both across and within trials, the more likely it would get accepted. 
Having examined the language-independent variables unrelated to L1 and AL effects, we move on 
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to the three L1 variables and two AL variables. Two of the L1 variables were significant: Activation 
diversity and neighbourhood density. The third L1 variable, consonant frame probability, was 
near significant. All three L1 variables have a negative coefficient suggesting that the more L1-like 
the nonword (i.e., the higher the activation diversity, the higher the neighbourhood density, and 
the higher the consonant frame probability), the lower the likelihood of acceptance. Only one 
of the two AL variables was significant: Neighbourhood density. Activation diversity was not 
significant since it was dropped from the model selection. Neighbourhood density has a positive 
coefficient suggesting that the more AL-like the nonword (i.e., the higher the neighbourhood 
density), the higher the likelihood of acceptance. Finally, we compare the effect sizes of the L1 
and AL variables. Neighbourhood density (AL) has a stronger effect than its L1 counterpart as well 
as the other two L1 variables, activation diversity and consonant frame probability. In sum, the 
influence of the AL lexicon is stronger than that of the L1 lexicon with the attested items. Random 
effects in Model 1 are summarised in Table 14 of the appendix.

 β SE z CILower95% CIUpper95% pBootstrapped

(Intercept) 1.4258 0.1223 11.6624 1.2098 1.6729 <.001***

L1 Activation 
diversity 

–0.1969 0.0893 –2.2044 –0.3684 –0.0288 .016*

Neighbourhood 
density 

–0.2778 0.0935 –2.9708 –0.4641 –0.0985 .004**

Consonant 
frame prob. 

–0.1483 0.0812 –1.8247 –0.3099 0.0017 .072 

AL Activation 
diversity 

– – – – – n.s.

Neighbourhood 
density 

0.4568 0.1258 3.6303 0.2162 0.7012 <.001***

Language 
independent

Identity 

(Identical vs. 
Non-identical) 

0.6749 0.1553 4.3445 0.3847 0.9761 <.001***

Trial number –0.5205 0.0717 –7.2538 –0.6644 –0.3882 <.001***

Response time –0.6544 0.0940 –6.9574 –0.8385 –0.4771 <.001***

Number of observations: 1856; number of participants: 232; number of items: 128

Level of significance: ∙(p ⩽ 0.1), * (p ⩽ 0.05), ** (p ⩽ 0.01), *** (p ⩽ 0.001).

Table 4: Fixed effects summary for Study I (German, attested). β: Coefficient; SE: Standard error; 
z: z-value; CILower95% and CIUpper95%: 95% confidence intervals of the coefficient from bootstrapping; 
pBootstrapped: p-value from bootstrapping simulations.
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3.1.2. Study I: German: Unattested
Table 5 summarises the fixed effects in Model 2, which is fitted over the German unattested 
nonwords. The model structure of the best model turned out to be the same as in Model 1 (see 
Section 3.1.1).

 β SE z CILower95% CIUpper95% pBootstrapped

(Intercept) 1.3606 0.1156  
11.7709 

1.1423 1.6034 <.001***

L1 Activation 
diversity 

–0.3528 0.0971 –3.6329 –0.5431 –0.1692 <.001***

Neighbourhood 
density 

–0.3232 0.0964 –3.3517 –0.5123 –0.1362 <.001***

Consonant 
frame prob. 

–0.2944 0.0884 –3.3306 –0.4729 –0.1246 <.001***

AL Activation 
diversity 

– – – – – n.s.

Neighbourhood 
density 

0.2246 0.0938 2.3939 0.0363 0.4128 .012*

Language 
independent

Identity 

(Identical vs. 
Non-identical) 

 0.5464 0.1635 3.3416 0.2338 0.8734 <.001***

Trial number –0.4082 0.0660 –6.1819 –0.5425 –0.2804 <.001***

Response time –0.4951 0.0808 –6.1263 –0.6581 –0.3474 <.001***

Number of observations: 1856; number of participants: 232; number of items: 128

Level of significance: ∙(p ⩽ 0.1), * (p ⩽ 0.05), ** (p ⩽ 0.01), *** (p ⩽ 0.001).

Table 5: Fixed effects summary for Study I (German, unattested). β: Coefficient; SE: Standard 
error; z: z-value; CILower95% and CIUpper95%: 95% confidence intervals of the coefficient from 
bootstrapping; pBootstrapped: p-value from bootstrapping simulations.

We first examine the language-independent variables. Like Model 1, Identity, trial number 
and response time were highly significant in the expected directions. Identical consonant 
frames are accepted more than non-identical consonant frames; the higher the trial number, the 
lower the likelihood of acceptance; and the longer the response time, the lower the likelihood 
of acceptance. Therefore, the effect of identity and recency were found in both attested and 
unattested nonwords. We now examine the three L1 variables and two AL variables. All three of 
the L1 variables were highly significant in the same direction as Model 1: Activation diversity, 
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neighbourhood density, and consonant frame probability. Like Model 1, the more L1-like the 
nonword (i.e., the higher the activation diversity, the higher the neighbourhood density, and the 
higher the consonant frame probability), the lower the likelihood of acceptance. Just like Model 
1, only neighbourhood density (AL) was significant with a positive coefficient, while activation 
diversity (AL) was dropped from the model selection. Again we compare the effect sizes of the 
L1 and AL variables. Contrary to Model 1, neighbourhood density (AL) has a weaker effect than 
its L1 counterpart as well as the other two L1 variables, activation diversity and consonant frame 
probability. In sum, the influence of the AL lexicon is weaker than that of the L1 lexicon with the 
unattested items. Random effects in Model 2 are summarised in Table 15 of the appendix.

Figure 2 summarises the effect size of the significant variables in Model 1 and Model 2. 
It illustrates that the direction of the significant effects is consistent across the attestedness 
condition. L1 variables have a negative effect while the AL variable has a positive effect. Identical 
consonant frames are more likely to be accepted. Nonwords that were responded to earlier in the 
experiment are more likely to be accepted across and within trials.

Figure 2: German: Effect size with a 95% confidence interval by attestedness (Model 1: Attested, 
Model 2: Unattested) and variable type (■: L1, : AL, : Language-independent); variables not 
illustrated were dropped during model selection.
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3.2. Study II: Mandarin
3.2.1. Study II: Mandarin: Attested
Table 6 summarises the fixed effects in Model 3, which is fitted over the Mandarin attested 
nonwords. The model structure of the best model is shown below.

Response (Yes/No) ∼ Identity + Neighbourhood density (L1) + Neighbourhood density (AL) 

+ Trial number + Response time + (1 + Response time | Participant) + (1 | Item)

Again we first examine the language-independent variables. Like the German group (Model 1 
and Model 2), Identity, trial number, and response time were highly significant in the expected 
directions. Identical consonant frames are accepted more than non-identical consonant frames; 
the higher the trial number, the lower the likelihood of acceptance; and the longer the response 
time, the lower the likelihood of acceptance.

 β SE z CILower95% CIUpper95% pBootstrapped

(Intercept) 0.9209 0.0948 9.7063 0.7462 1.1172 <.001***

L1 Activation 
diversity 

– – – – – n.s.

Neighbourhood 
density 

–0.2405 0.0793 –3.0309 –0.4025 –0.0867 .002**

Consonant 
frame prob. 

– – – – – n.s.

AL Activation 
diversity 

– – – – – n.s.

Neighbourhood 
density 

0.3226 0.1006 3.2079 0.1118 0.5267 .002**

Language 
independent

Identity 

(Identical vs. 
Non-identical) 

0.7173 0.1349 5.3176 0.4647 0.9859 <.001***

Trial number –0.2774 0.0609 –4.5531 –0.3980 –0.1581 <.001***

Response time –0.3651 0.0759 –4.8140 –0.5146 –0.2266 <.001***

Number of observations: 1752; number of participants: 219; number of items: 128

Level of significance: ∙(p ⩽ 0.1), * (p ⩽ 0.05), ** (p ⩽ 0.01), *** (p ⩽ 0.001).

Table 6: Fixed effects summary for Study II (Mandarin, attested). β: Coefficient; SE: Standard error; 
z: z-value; CILower95% and CIUpper95%: 95% confidence intervals of the coefficient from bootstrapping; 
pBootstrapped: p-value from bootstrapping simulations.
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Unlike the German group (Model 1), of the three L1 variables, only neighbourhood density was 
significant, while both activation diversity and consonant frame probability had no significant effect 
on nonword acceptance. The effect of neighbourhood density (L1) suggests that the more L1-like 
the nonword, the lower the likelihood of acceptance. Of the AL variables, only neighbourhood 
density AL was significant in the same direction – the more AL-like the nonword, the higher the 
likelihood of acceptance. Activation diversity (AL) was not significant. Finally, the effect size of 
neighbourhood density (AL) is higher than its L1 counterpart. Besides the insignificance of the 
two L1 variables, activation diversity and consonant frame probability, the direction of the L1 and 
AL effects and their relative difference of their effect sizes are consistent with that of the German 
group (Model 1). In sum, the influence of the AL lexicon is stronger than that of the L1 lexicon 
with the attested items. Random effects in Model 3 are summarised in Table 16 of the appendix.

3.2.2. Study II: Mandarin: Unattested
Table 7 summarises the fixed effects in Model 4, which is fitted over the Mandarin unattested 
nonwords. The model structure of the best model is shown below.

Response (Yes/No) ∼ Identity + Neighbourhood density (L1) + Consonant frame probabil-

ity (L1) + Neighbourhood density ( AL) + Trial number + Response time + (1 | Participant) 

+ (1 | Item)

The language-independent variables were all significant and their effects are in the same direction 
as all the other models. Identity, trial number and response time were highly significant in the 
expected directions.

Of the three L1 variables, activation diversity was not significant and was dropped during 
model selection, while neighbourhood density and consonant frame probability were both 
significant with a negative effect. The more L1-wordlike the nonword, the lower its likelihood of 
acceptance. Of the two AL variables, only neighbourhood density was significant with a positive 
effect. A comparison of the effect sizes across the L1 and AL variables suggest that neighbourhood 
density (AL) has a weaker effect than its L1 counterpart as well as consonant frame probability 
(L1).

Besides the insignificance of the L1 variable activation diversity, the direction of the L1 and 
AL effects and the relative difference of their effect sizes are consistent with that of the German 
group (Model 2). Again, the influence of the AL lexicon is weaker than that of the L1 lexicon with 
the unattested items. Random effects in Model 4 are summarised in Table 17 of the appendix.

Figure 3 summarises the effect size of the significant variables in Model 3 and Model 4. 
It illustrates that the direction of the significant effects is consistent across the attestedness 
condition with a minor difference in how consonant frame probability (L1) is only significant in 
the unattested condition.
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 β SE z CILower95% CIUpper95% pBootstrapped

(Intercept) 1.1052 0.1118 9.8829 0.8917 1.3261 <.001***

L1 Activation 
diversity 

– – – – – n.s.

Neighbourhood 
density 

–0.2596 0.0964 –2.6928 –0.4424 –0.0806 .008**

Consonant 
frame prob. 

–0.2507 0.0952 –2.6330 –0.4298 –0.0662 .004**

AL Activation 
diversity 

– – – – – n.s.

Neighbourhood 
density 

0.2147 0.0938 2.2861 0.0307 0.3975 .016*

Language 
independent

Identity 

(Identical vs. 
Non-identical) 

0.8441 0.1701 4.9618 0.5122 1.1841 <.001***

Trial number –0.2754 0.0639 –4.3086 –0.4028 –0.1508 <.001***

Response time –0.4418 0.0743 –5.9449 –0.5851 –0.2889 <.001***

Number of observations: 1752; number of participants: 219; number of items: 128

Level of significance: ∙(p ⩽ 0.1), * (p ⩽ 0.05), ** (p ⩽ 0.01), *** (p ⩽ 0.001).

Table 7: Fixed effects summary for Study II (Mandarin, unattested). β: Coefficient; SE: Standard 
error; z: z-value; CILower95% and CIUpper95%: 95% confidence intervals of the coefficient from 
bootstrapping; pBootstrapped: p-value from bootstrapping simulations.

3.3. Attestedness and its interactions
In the models for attested items (model 1, and model 3), we observed that AL variables have a 
stronger effect than the L1 variables. In contrast, in the models for the unattested items (model 2, 
and model 4), the L1 variables have a stronger effect than the AL variables. To better evaluate this 
pattern, we conducted two additional analyses by testing if attestedness interacts with L1 and AL 
variables for each language group separately. Attestedness was sum-coded with unattestedness 
as the base level. Below, we present the best model for German; next we present the best model 
for Mandarin.

Response (Yes/No) ∼ Identity + Activation diversity (L1) + Neighbourhood density (L1) + 

Neighbourhood density (AL) + Consonant frame probability (L1) + Trial number + Response 

time + Activation diversity (L1):Attestedness + Neighbourhood density (AL):Attestedness + 

Consonant frame probability (L1):Attestedness + (1 + Response time | Participant) + (1 | 

Item).
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Response (Yes/No) ∼ Identity + Neighbourhood density (L1) + Consonant frame probabil-

ity (L1) + Neighbourhood density (AL) + Trial number + Response time + Consonant frame 

probability (L1):Attestedness + (1 + Response time | Participant) + (1 | Item)

Figure 3: Mandarin: Effect size with a 95% confidence interval by attestedness (model 3: Attested, 
model 4: Unattested) and variable type (■: L1, : AL, : Language-independent); variables not 
illustrated were dropped during model selection.

Table 8 and Table 9 summarise the fixed effects of the two regression models, which are fitted 
over the German nonwords and the Mandarin nonwords respectively. There is no main effect of 
attestedness found in either the German group or the Mandarin group. For German, attestedness 
interacts with neighbourhood density (AL) significantly and two interaction terms were near 
significant: Activation diversity (L1), and consonant frame probability (L1). Attestedness did 
not significantly interact with neighbourhood density (L1), and it was dropped during model 
selection. For Mandarin, only one of the four interaction terms was significant: Attestedness 
interacts with consonant frame probability (L1). Attestedness did not significantly interact with 
neighbourhood density (L1) and neighbourhood density (AL), and they were dropped during 
model selection. Random effects of the two models are summarised in Table 18 and Table 19 of 
the appendix.
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 β SE z CILower95% CIUpper95% pBootstrapped

 (Intercept) 1.4229 0.1033 13.7782 1.2352 1.6254 <.001***

L1 Activation 
diversity 

–0.2822 0.0730 –3.8654 –0.4301 –0.1388 .002**

Neighbourhood 
density 

–0.2911 0.0738 –3.9476 –0.4328 –0.1456 <.001***

Consonant 
frame prob. 

–0.2418 0.0676 –3.5751 –0.3776 –0.1095 <.001***

AL Activation 
diversity 

– – – – – n.s.

Neighbourhood 
density 

0.3151 0.0796 3.9600 0.1547 0.4698 <.001***

Language 
independent

 Identity 

 (Identical vs. 
Non-identical) 

0.6207 0.1266 4.9020 0.3789 0.8749 <.001***

Trial number –0.4811 0.0480 –10.0181 –0.5750 –0.3860 <.001***

Response time –0.6254  0.0940 –8.7904 –0.7635 –0.4908 <.001***

Attested-
ness and its 
 interactions

Attestedness 
(AL) 

(Attested vs. 
Unattested) 

 0.0238  0.1037  0.2295  
–0.1700 

 0.2187 .792n.s.

Attestedness  
(AL): 

Activation 
diversity (L1) 

 0.2097  0.1061  1.9764  -0.0072  0.4284 .058 

Attestedness  
(AL): 

Neighbourhood 
density (L1) 

– – – – –  n.s.

Attestedness 
(AL): 

Consonant 
frame prob. (L1) 

 0.1856  0.0949  1.9550  -0.0099  0.3777  .054 

Attestedness  
(AL): 

(Contd.)
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 β SE z CILower95% CIUpper95% pBootstrapped

Neighbourhood 
density (AL) 

 0.2994  0.1284  2.3318  0.0340  0.5438  .014*

Number of observations: 3712; number of participants: 232; number of items: 128

Level of significance: ∙(p ⩽ 0.1), * (p ⩽ 0.05), ** (p ⩽ 0.01), *** (p ⩽ 0.001).

Table 8: Fixed effects summary for Study I with attestedness and its interactions with L1 and 
AL variables (German, attested, and unattested). β: Coefficient; SE: Standard error; z: z-value; 
CILower95% and CIUpper95%: 95% confidence intervals of the coefficient from bootstrapping; pBootstrapped: 
p-value from bootstrapping simulations.

(Contd.)

 β SE z CILower95% CIUpper95% pBootstrapped

(Intercept) 1.0660 0.0897 11.8720 0.8879 1.2534 <.001***

L1 Activation 
diversity 

– – – – –  n.s.

Neighbourhood 
density 

–0.2400 0.0687 –3.4948 –0.3727 –0.1075 <.001***

Consonant 
frame prob. 

–0.1592 0.0744 –2.1409 –0.3126 –0.0111 .036*

AL Activation 
diversity 

– – – – – n.s.

Neighbourhood 
density 

0.2524 0.0698 3.6153 0.1101 0.3972 <.001***

Language 
independent

Identity 

(Identical vs. 
Non-identical) 

0.8130 0.1306 6.2258 0.5610 1.0732 <.001***

Trial number –0.2769 0.0438 –6.3300 –0.3621 –0.1891 <.001***

Response time  
–0.4532 

0.0631 –7.1792 –0.5685 –0.3367 <.001***

Attested-
ness and its 
 interactions

Attestedness 
(AL) 

(Attested vs. 
Unattested) 

–0.1312 0.0928 –1.4135 –0.3351 0.0590 .208n.s.
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4. Discussion
In order to find out whether a learning meachanism which has been demonstrated in English 
speakers is universal, the present study aimed at investigating two distinct populations of 
speakers, namely Mandarin and German. In the present paper we utilize a new approach on how 
to disentangle (possibly universal) effects of learning from effects of the native language of the 
speakers and from effects of the artificial language designed for the experiment. We did so by 
statistically controlling for wordlikeness by means of analogical and discriminative modeling. 
Model outputs enabled us to control for L1 as well as for AL effects. In the discussion we go 
through the observed effects step by step. We start with the original learning effect. We then 
briefly discuss some language-independent task effects. After that we turn to L1 effects and then 
AL effects and the comparison of the two. We close with a discussion about our findings and 
implications for future research on learning behaviour.

 β SE z CILower95% CIUpper95% pBootstrapped

Attestedness 
(AL): 

Activation 
diversity (L1) 

– – – – – n.s.

Attestedness 
(AL): 

Neighbourhood 
density (L1) 

– – – – – n.s.

Attestedness  
(AL): 

 Consonant 
frame prob. 
(L1) 

 0.2051  0.0858  2.3894  0.0303  0.3820  .030*

Attestedness  
(AL): 

Neighbourhood 
density (AL) 

– – – – –  n.s.

Number of observations: 3504; number of participants: 219; number of items: 128

Level of significance: ∙(p ⩽ 0.1), * (p ⩽ 0.05), ** (p ⩽ 0.01), *** (p ⩽ 0.001).

Table 9: Fixed effects summary for Study II with attestedness and its interactions with L1 and 
AL variables (Mandarin, attested, and unattested). β: Coefficient; SE: Standard error; z: z-value; 
CILower95% and CIUpper95%: 95% confidence intervals of the coefficient from bootstrapping; pBootstrapped: 
p-value from bootstrapping simulations.
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4.1. The consonant identity effect
Linzen and Gallagher (2017) have shown that English speakers were able to rapidly learn a 
consonant identity pattern from an artificial language and the present study replicates these 
findings for German and Mandarin: In all models identity showed up as a highly significant factor 
– nonwords with identical consonsants are more likely to be accepted as part of the new language 
than nonwords with non-identical consonants. Our study confirms the robust and strong identity 
effect for German and Mandarin speakers (Figure 4), two populations which are very distinct 
from each other. The figure demonstrates that the identity effect is robust as it shows up in both 
population regardless of whether the nonword was attested or unattested during training.

Figure 4: Response distribution by identity and attestedness in the German group (left) and the 
Mandarin group (right).

This is remarkable for two reasons: First, it seems likely that a general cognitive mechanism 
promoting learning of identity patterns also affects smaller units such as features and is responsible 
for the relative learnability of harmony patterns (Baer-Henney & van de Vijver, 2012; Finley, 
2012; Martin & White, 2021; Moreton, 2012; Wilson, 2003). The identity effect seems not to be a 
language-specific phenomenon but it seems to be universal as has been proven by demonstrating 
it in three distinct languages.

Second, replication of findings in science has gained increasing attention over the last few 
years. Some scientific subfields including linguistics discuss a so-called replication crisis since 
replicability rates for empirical studies have been found to be very low (Nieuwland et al., 2018; 
Stack, James, & Watson, 2018). This problems calls for convincing accumulating evidence for 
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the effects we report (Nicenboim, Roettger, & Vasishth, 2018; Roettger & Baer-Henney, 2019), 
and the present paper allows us to show valuable additional evidence for an effect that has been 
reported for English speakers and has replicated the original effect in German and Mandarin 
speakers.

It is worth noting that the identity effect in our study is strong enough not to be masked by 
our additional L1 and AL variables. In other words, the effect cannot be attributed to language-
specific characteristics of either the artificial language used in the experiment or the L1 of the 
speakers. The present case hence illustrates a scenario in which an effect under investigation is 
robust enough not to be influenced by language-specific variables.

4.2. Task effects
While task effects do not play a central role in the present paper we still acknowledge the fact 
that to the best of our knowledge, the examination of task effects has been overlooked by most 
ALL researchers. In the present study we controlled for trial number and response time. We 
observed that the acceptance rate decreased within and across trials irrespective of language and 
attestedness. Longer response times resulted in more negative responses and so did higher trial 
numbers. Both types of artificial CVCV items (identical and non-identical frames) were more 
likely to be rejected as time proceeded within and across trials. We cannot confidently provide 
a singular interpretation of these task effects, since there are many possible explanations. Later 
trials in the experiment may suffer from fatigue or boredom of the participants or the additive 
exposure to stimuli during the test phase as compared to stimuli from the training had an effect 
(e.g., resulting in a tendency to accept items that are more similar to accepted test stimuli). That 
longer reaction times come with more negative responses could be a problem of inattention or 
decision difficulty.

The task effects are an important side finding, since it clearly suggests that even for a rapid 
learning paradigm of ALL (in our case, with only 16 test trials), task effects already play a role in 
shaping the rate of learning. Furthermore, the effect size of the task effects was consistently higher 
than the L1 and the AL variables across all models, which further highlights their importance. 
Future studies may take a closer look at task effects, for instance, by including additionally 
collecting measures of memory, fatigue, boredom, and attention.

4.3. L1 effects
We have found that L1 variables, that is activation diversity, neighbourhood density and 
consonant probabilities of types, all have a negative effect in ALL experiments. For Germans 
we found that (1) the higher its NDL activation diversity is, (2) the higher its neighbourhood 
density is, and (3) the higher its consonant frame probability is, the less likely a test item is to be 
accepted as a word of the artificial language. For German, all three L1 variables were significant 
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with both the attested and the unattested nonwords. For Mandarin speakers we found that (1) 
the higher its neighbourhood density is, and (2) the higher its consonant frame probability is 
(only unattested), the less likely a test item is to be accepted as a word of the artificial language. 
For Mandarin, activation diversity was not significant with both the attested and the unattested 
nonwords, and consonant frame probability was only significant with the unattested nonwords. 
Taken together, the more similar an item is to L1, the more likely it is to be rejected. Let us first 
discuss why there is a negative effect of L1 knowledge.

Learners in our experiment faced a short exposure phase in which they were told to listen 
to words of a new language. Their test task later on was to judge whether newly encountered 
words could also be part of that language. We speculate that participants may have suppressed 
their L1 knowledge in order to learn the AL, and this suppression was reinforced by the design 
of the experiment. The participants were told that AL was a new language that they would learn; 
therefore, it was safe for the participants to assume that this new language was distinct from 
their L1. Everything that reminded participants of their L1 could have been suppressed and, as a 
consequence, rejected: The more similar an item was to L1, the less likely it was to be accepted 
as a word of AL.

Next, a few speculations can be made as to why the L1 effects were weaker in Mandarin than 
in German. Note that the direct comparisons of the two groups in a single statistical model were 
not conducted. Therefore, these speculations should be taken with caution. First, the Mandarin 
concept of a word is different. The vast majority of morphemes in Mandarin Chinese consist 
of single syllables (Norman, 1988). Mandarin is also a compounding language. Most disyllabic 
words, therefore, consist of syllables, which are also morphemes, and these morphemes are highly 
salient as they can serve as individual words (Zhou & Marslen-Wilson, 1994). The same is not 
true for German disyllabic words since most German syllables are not morphemes that can stand 
alone as monomorphemic words. Therefore, compared to the German participants, Mandarin 
participants could readily assign meanings to their disyllabic nonwords. In fact, recent studies of 
the lexical processing of English nonwords have already shown that nonwords do interact with 
the semantic space (Chuang et al., 2019; 2020) and so does the production of English nonwords 
(Schmitz, Plag, Baer-Henney, & Stein, 2021). We speculate that the role semantics plays in the 
nonword processing will be a lot larger for Mandarin than for English or German. The weaker 
L1 effects of Mandarin could be due to how our L1 measures do not take semantics into account, 
which is likely to play a strong role for Mandarin.

Second, Mandarin is shown to have productive reduplication patterns, affecting major lexical 
categories (verbs, adjectives, and nouns) (F.-Y. Chen, Mo, Huang, & Chen, 1992; Melloni & 
Basciano, 2018). For instance, reduplication can take place with both monosyllabic bases (A as 
AA), and disyllabic bases (AB as ABAB). Our lexicon is unlikely to contain as many reduplicated 
forms as speakers might actually use. As our lexicon was estimated using a corpus of texts, it 
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suffers from a data sparsity issue. Low frequency reduplicated forms will not be attested unless a 
larger corpus is used (Blevins, Milin, & Ramscar, 2017).16 This could lead to a poor estimate of our 
L1 variables as they were computed over a lexicon with an under-representation of reduplicated 
forms. The adverse effects of this under-representation are likely to be amplified by how the 
nonwords with identical consonant frames resemble reduplicated forms. The weaker L1 effects 
could simply be an artefact of our lexicon.

4.4. AL effects
We have found that one of the two AL variables, neighbourhood density, has a positive effect in 
both ALL studies. The German and Mandarin speakers were more likely to accept a test nonword 
as a word of the artificial language if it had a higher AL neighbourhood density. The other AL 
variable, activation diversity, had no effect in either language group. For both language groups, 
neighbourhood density was significant with both the attested and the unattested nonwords. We 
found that AL effects are weaker than the L1 effects in unattested items. In sum, the more similar an 
item is to AL, the more likely it is to be accepted. In other words, participants were doing their task as 
expected, such that they were judging incoming new test nonwords based on their AL wordlikeness.

Why were participants sensitive only to the AL neighbourhood density measure but not to 
the AL activation diversity measure in all of the models? We speculate that this asymmetry in 
the two AL variables lies in how well the exposure items were encoded and the robustness of the 
two lexical modelling approaches.

We have reasons to believe that the participants did not remember the exposure items 
correctly. In other words, the exposure items were not well encoded in memory as distinct lexical 
items and not encoded faithfully to the input. First, the instructions did not ask the participants 
to memorise these exposure items, and they were told that the subsequent task would involve 
only new words; therefore, they had no reason to learn these exposure items. Second, there were 
no tasks that required them to recall these exposure items. Third, in natural language, word 
learning is driven by the need to distinguish different meanings for communication. However, 
unlike real words, these exposure items are void of meaning17. Let us now examine how poor 
item encoding would have an effect on how well the two models estimate wordlikeness.

 16 This issue of data sparsity can be seen with the lexical statistical analyses conducted in Boll-Avetisyan (2012, Ch. 
4). The study used a Mandarin Chinese lexicon containing phonological transcriptions of telephone conversations 
(266,642 word tokens) to estimate the degree of consonant co-occurrences with shared [place] in CVC sequences. 
They repeated their analyses with and without any attested reduplicated forms and they concluded that there is no 
strong evidence for constraints regarding PLACE on non-adjacent consonants. Only 0.33% of the lexicon were iden-
tified as reduplicated forms (901 out of 266,642 word tokens), which is likely an underestimation of the productive 
reduplication patterns in Mandarin. This underestimation could influence the reliability of their lexical analyses.

 17 While speakers might assign meanings to the nonwords based on their similarity to real words (e.g., Bailey & Hahn, 
2005; Schmitz et al., 2021), the nonwords themselves are inherently void of meaning.
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The naive discriminative learning (NDL) model aims to discriminate between a set of 
outcomes given their corresponding cues. The effect of inaccurate encoding of the exposure 
items could severely affect how well the naive discriminative learner predicts the performance 
of our human learners because the activation diversity measure is a function of the amount of 
activation of cues across all outcomes. If the exposure items were incorrectly encoded18, hence 
stored as incorrect outcomes, the cues that correspond to the incorrect outcomes would not be 
represented as originally intended and the cues that correspond to the intended outcome would 
be erroneously strengthened. As a consequence, the cues of the test nonwords would not find 
their actual activation weights in the intended cue-to-outcome matrix. In this way, an inaccurate 
encoding would cause the NDL model to represent the phonological cues that correspond to the 
outcomes differently from our human participants.

What about the AL neighbourhood density measure? We speculate that the GNM is robust to 
the precise encoding of the phonological forms, which constitute the AL lexicon. GNM measures 
the overall wordlikeness based on the frequency-weighted sum of the phonological distances 
between the target word and every word in the lexicon, and crucially these phonological 
distances are independent of each other. While the incorrect encoding of an exposure item in the 
AL lexicon would still affect the phonological distance between itself and the test nonword, it 
would not affect how other items contribute to the overall wordlikeness score of the target word. 
This is what makes GNM different from NDL. In NDL, the incorrect encoding of an exposure item 
would affect the activation values of the intended cues and incorrect cues which are shared by 
other outcomes. Thus, even if some of the exposure words were incorrectly encoded, the effect 
on GNM would be smaller than that on NDL.

Finally, there is the possibility that NDL requires more trials to get a more reliable cue-
to-outcome matrix, and that it is not suitable for modelling rapid learning in contrast to the 
probabilistic model by Linzen and O’Donnell (2015). Linzen and O’Donnell (2015)’s model has 
the ability to represent different degrees of generalisation which makes it suitable for rapid 
learning. It was demonstrated that, together with a parsimony bias, their model was able to 
simulate learning patterns similar to human learners in Linzen and Gallagher (2017), specifically 
in how human learners favour rapid abstraction. Furthermore, NDL makes the assumption that 
the association strengths between cues and outcomes will no longer change (i.e. the model has 
reached the adult state of learning) (Danks, 2003). Given the small number of trials in the 
exposure phase, this might be too big an assumption to make.

 18 An item might be incorrectly encoded because of speech misperception (e.g., Bennett, Tang, & Ajsivinac Sian, 2018; 
Miller & Nicely, 1955; Nieder & Tang, 2023; Tang, 2015; Tang & Nevins, 2014) or misremembering.
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4.5. A comparison of L1 and AL effects
We found an asymmetric pattern in the strength of L1 and AL predominantly in the German 
group: While AL variables are stronger than L1 variables in attested items, L1 variables are 
stronger than AL variables in unattested items (see Section 3.3). This can be explained by how 
wordlike the nonwords were with respect to the L1 and the AL lexicons. In comparison with 
the unattested items, the attested items were even more similar to the AL lexicon than to the L1 
lexicon since the consonant frames of the attested items are the same as all of the items in the 
AL lexicon, with only the vowels being different. Likewise, L1 has more impact than AL on the 
unattested items, because the participants are more uncertain about these items being a word of 
AL. This uncertainty causes the participants to rely on what their existing linguistic knowledge, 
namely their L1. Therefore, the participants associated the attested nonwords more strongly with 
the AL than the L1, thus the AL effects were enhanced and the L1 effects were weakened.

There is no main effect of attestedness found in either the German group or the Mandarin 
group. Hence, the population difference cannot be explained on the basis of the Mandarin speakers 
not being able to distinguish attested items from the unattested items. Instead, we believe that 
this is more likely due to the L1 effects being weaker in the Mandarin group in general, which we 
speculated to be caused by the peculiarities of Mandarin as discussed in Section 4.3.

4.6. Our findings and implications for research on learning behaviour
Our experiment showed that the original learning effect could be shown to be present in German 
and Mandarin speakers and, therefore, we could confidently argue for its language-independence 
and universality. We have moreover shown that there are language-independent task effects but 
crucially that also language-specific effects are at work: More L1 wordlikeness leads to more 
acceptance of a stimulus while more AL wordlikeness leads to more rejections of a stimulus. 
These findings result in implications for future research on learning behaviour: Our findings 
show that language learning research needs stricter design control of the miniature training 
language than commonly assumed. With the present paper we aim to show how ALL research 
but also other learning research can be refined methodologically.

Our test case shows how the lexicons influence decisions in an ALL experiment with 
acceptability judgements, specifically an experiment which examines learning of a probabilistic 
phonotactic identity pattern (Linzen & Gallagher, 2017). There is reason to believe that lexical 
effects will also influence ALL studies in which other methods are evaluated, including the whole 
range of perceptual and productive test procedures.

Our findings can contribute beyond the investigation of phonotactic learning. One strand of 
research of special interest to the proposed approach is that of language learning biases. Biases 
are not only seen as driving forces in language learning; they are said to shape human language. 
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They are seen as universal strategies and thus call for cross-linguistic studies that can justify 
broad implications based on these biases. Such cross-linguistic studies are methodologically 
challenging and we offer a solution for this problem. Biases need more such experimental 
investigations as some of them are controversially discussed. There is a relative consensus about 
the complexity bias, which says that featurally simple phonological patterns are learned more 
easily than more complex patterns (Moreton & Pater, 2012b), while the substantive bias, a bias 
that favours phonetically motivated patterns (Baer-Henney et al., 2015; DeMille et al., 2018; 
Finley, 2012; Glewwe, 2019; Greenwood, 2016; Martin & White, 2021; Moreton & Pater, 2012a; 
Tang, DeMille, Frijters, & Gruen, 2020; Wilson, 2006) is heavily debated. Other examples are the 
locality bias showing a preference for local over non-local patterns (Baer-Henney & van de Vijver, 
2012; McMullin & Hansson, 2016; Tang & Akkuş, 2022; White et al., 2018), or the regularisation 
bias showing a preference for regular over irregular patterns (Fehér, Wonnacott, & Smith, 2016; 
Hudson Kam & Newport, 2005; Nevins, Rodrigues, & Tang, 2015; Samara, Smith, Brown, & 
Wonnacott, 2017; Smith et al., 2017; Smith & Wonnacott, 2010; Tang & Nevins, 2013). One 
essential problem to date is that most evidence for universal biases comes from investigations of 
only a few languages. Most of the abovementioned studies report evidence from one language 
each despite the fact that the claim for universality calls for crosslinguistic studies. The present 
data highlights the risk of underestimating the role of lexical statistics in ALL research. As we 
have argued, the influence of a bias could be masked by lexical effects. With the present approach 
we now offer a solution to these problems and show that lexical effects can be modelled, which 
comes with several additional advantages.

First, the present approach facilitates carrying out cross-linguistic studies. As with the 
current study, one could analyse each language group separately and evaluate if the learning 
bias persists even when language-specific factors (as captured by our L1 and AL variables) are 
taken into account. Furthermore, one could evaluate the relative strength of the learning bias to 
see if it is similar across the two language groups by regressing both language groups together. 
This is particularly advantageous when we would like to compare languages that have relatively 
distinct inventories. By controlling for lexical variables we no longer need one set of items for 
all the languages under investigation and we are no longer constrained by phoneme inventory 
overlap as in White et al. (2018). It allows us to investigate effects of the language groups under 
investigation in much more detail than in common practice. Crucially, lexical variables can be 
used to control two types of L1 similarities of an AL test item. An AL test item can be similar 
to the L1 and can be supported by L1 lexical statistics in terms of a) the target AL pattern of 
interest, and b) any other non-target patterns. Typically, ALL experimenters would avoid testing 
a population whose L1 (partially) contains the target AL pattern of interest. The reason is that the 
amount of learning of a target AL pattern is expected to be greater with languages with a higher 
similarity of the target AL pattern. However, by directly modelling the degree of L1 similarity 
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with respect to the target AL pattern of interest, researchers would be able to to test a target AL 
pattern even in languages that contain the pattern of interest. The present account offers this 
unique advantage of being able to investigate the same learning mechanisms in multiple and 
distinct languages.

Second, our approach would be beneficial for second language acquisition (SLA) research. 
While it is usually discussed independently from ALL learning, it is methodologically and 
thematically related. SLA can be seen as a real life setting of ALL. Studies that have directly 
evaluated the learning behaviour in SLA and ALL have found a relationship between a learner’s 
ability to learn a second language and their performance in an ALL experiment (see Ettlinger, 
Morgan-Short, Faretta-Stutenberg, and Wong (2016) and references therein). Both areas seek to 
understand the factors that underlie language learning. In SLA experimental studies often consist 
of a learning phase and a test phase for investigating language learning behaviours of different 
L2s by speakers of different L1s (Muylle, Bernolet, & Hartsuiker, 2021; Wonnacott, Brown, & 
Nation, 2017). The selected language material can be real, artificial, or a mixture of the two. 
Crucially, our approach can be readily applied in SLA research, since the choice of training 
words often depends mainly on the criteria of structural simplicity, learner-friendliness, and is 
not controlled with respect to L1 and their number is limited (Sinkeviciute, Brown, Brekelmans, 
& Wonnacott, 2019).

Third, we want to note that the concept can also be applied to other types of learning (i.e., 
investigation of syntactic learning and semantic learning, such as Muylle et al., 2021; Snefjella, 
Lana, & Kuperman, 2020). Unlike in our experiment, in which we assessed L1/AL knowledge 
with the help of lexicons including information about phonological features and frequencies, one 
could use suitable input sources or corpora matching the needs of the specific investigation. Let us 
consider the following two cases: a) Wordlikeliness in phonological alternation learning, and b) 
measures beyond lexical statistics. First, wordlikeliness could affect the learning of phonological 
alternations. For instance, if the alternation learning task is to choose one of two options (e.g., 
choose the plural form given a singular form), or rate a given option as in Albright and Hayes 
(2003) one could include in the analysis the wordlikeness of each option given their L1 or the 
training stimuli. Second, one could include measures of patterns of other kinds. For instance, in 
an experiment that seeks to examine the preference of two syntactic word orders (Subject-Verb-
Object, and Object-Verb-Subject), the distribution of these two word orders in the learners’ L1 
can be estimated as the frequency ratio of the two patterns as appeared in a text corpus. In both 
cases, these measures (be they lexical or syntactic) can then be captured as covariates during 
statistical modelling just like in our study. Linguistic L1 and AL knowledge of any kind can be 
assessed and evaluated in investigations of language learning.

Finally, we want to conclude that considering the effects of L1 and AL, as well as the task, 
should be incorporated in existing models of language learning (Albright, 2009; Bylinina, 
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Tikhonov, & Garmash, 2021; Hayes & Wilson, 2008; Johnson, Culbertson, Rabagliati, & Smith, 
2020; Kakolu Ramarao et al., 2023; Linzen & O’Donnell, 2015; Tang, Kakolu Ramarao, & Baer-
Henney, 2022) in order to better simulate human learning behaviour.

5. Conclusions
The present study investigated the influence of L1 and AL lexical statistics during the ALL 
experiment with adult German and Mandarin speakers. We uncovered rapid learning of an 
identity pattern, which had originally been found for English speakers by Linzen and Gallagher 
(2017). Moreover, we found that both the L1 and the AL lexicon contribute to the performance 
of the learners. While L1 wordlikeness led participants to reject artificial items, AL wordlikeness 
led participants to accept them. As a consequence, we argue that it is highly important in ALL 
research to take these measures into account. The effect of rapid learning of the identity constraint 
in the present paper persisted and could be confirmed for speakers of two very distinct languages 
despite the impact of L1 and AL statistics.

We show that it is possible to quantify psycholinguistic variables that are known to play a 
role in language processing in ALL research by incorporating them as covariates in a statistical 
model. We argue that it is important and possible to take L1 covariates into account, such as 
neighbourhood density and lexical activation diversity (Bailey & Hahn, 2001; Milin et al., 2017). 
Also, AL variables can be implemented in a similar way to capture the effect of the trained 
lexicon. In sum, it is clearly necessary to design the artificial language and control AL lexical 
statistics with great care, and we have shown how this can be done.

We acknowledge that the ALL paradigm is a great opportunity to investigate learning 
behaviour under laboratory conditions. It enables us to research the complex questions in 
language learning in a relatively simple way. ALL research is thus suitable to complement more 
intricate investigations of children. Underlying learning mechanisms may be similar and thus 
help us to explain the language learning and acquisition process.

Our arguments are relevant for language learning studies investigating learning behaviour 
and learning mechanisms of any type. Regardless of whether a study deals with learners (children 
or adults) that learn any artificial or real L2, the items used in training and the L1 knowledge of 
the participants can jointly shape learners’ behaviour.
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Appendix

A: Task instructions
German
Exposure phase: Sie werden nun einige Wörter einer Fantasiesprache hören. Sie brauchen
sich diese Wörter nicht zu merken, aber Sie sollten jedes Wort einmal für sich wiederholen,
nachdem Sie es gehört haben. Wenn Sie einige derWörter der Fantasiesprache gehört haben,
werden Sie neue Wörter hören. Sie werden gefragt, ob diese so klingen, als könnten Sie
ebenfalls Wörter der Fantasiesprache sein.

Post-exposure: Sie haben nun genügend Wörter der Fantasiesprache gehört!
Jetzt präsentieren wir Ihnen neue Wörter und Sie sollen entscheiden, ob diese so klingen,

als könnten Sie ebenfalls Wörter derselben Fantasiesprache sein.
Testing phase: Klingt das Wort so, als wäre es ein Wort der Fantasiesprache, die Sie

gerade gehört haben? “Ja” “Nein”

Mandarin Chinese
Exposure phase: 现在您将听到一些词，这些词来源于某种人造语言。您不需要记住它们，
但每听一个词，应心中默念，并且对它们有大致的印象。在播放若干词语后，您将会听到一
些新词，这时请判断，这些新词听起来是否属于该人造语言。
Post-exposure: 太棒了！您已经听完了这门新语言的词语。
现在，您将会听到一些新词。请务必判断，这些新词听起来是否属于该语言。

Testing phase: 这个词听起来像是属于这门语言的吗？“是的” “不是”

B: Rescola-Wagner Equations
The following equation specifies the association strength Vt+1i of a given cue Cj with the
outcome O at time t+ 1.

(1) Vt+1i = Vti + ΔVt+1i

The following equations specify the change in association strength ΔVti

(2) ΔVti =


0 if ABSENT(Cj, t)

αiβ1(λ −
∑
PRESENT(Cj,t) Vj) if PRESENT(Cj, t) & PRESENT(O, t)

αiβ2(0−
∑
PRESENT(Cj,t) Vj) if PRESENT(Cj, t) & ABSENT(O, t)
0 otherwise
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The product of α and β represents the learning rate. λ represents the maximum learn-
ability of the outcome.

C: Experimental items

German frequent group 1
Training Test

Attested Unattested

Identical C_C
be:bo ba:bu bo:bi bu:ba kho:khi
thi:tha the:thu tho:thi tha:tho ha:hu
na:ni no:nu nu:ne ne:no phe:pha
Ke:Ka Ki:Ko Ku:Ki Ka:Ku mi:mu

Non-identical C_C
kho:ha khe:hi khi:hu khu:ho bo:Ku
ha:phi hi:phu hu:pho ho:phe Ki:thu
pha:mi phu:me pho:ma phe:mu the:ni
mo:kha mu:khe ma:khi me:kho no:ba

German frequent group 2
Training Test

Attested Unattested

Identical C_C
kha:kho khe:kha khi:khu kho:khi bu:ba
he:hi hi:ho ho:ha ha:hu tha:tho
pho:phu phu:phe phi:pho phe:pha ne:no
mo:mi ma:mo me:ma mi:mu K:aKu

Non-identical C_C
be:Ka bu:Ki bi:Ke bo:Ku khu:ho
Ke:tha Ku:tho Ko:thi Ki:thu ho:phe
tho:na tha:nu thi:no the:ni phe:mu
nu:be ni:bo ne:bi no:ba me:kho

Table 10. IPA-simplified items of frequent German groups.
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German infrequent group 1
Training Test

Attested Unattested

Identical C_C
li:le la:lu le:lo lo:li ze:zo
gu:ge ga:go ge:gi gi:gu da:di
fa:fi fu:fa fo:fu fe:fo ve:va
tsu:tsi tsi:tsa tse:tso tsa:tsu jo:ja

Non-identical C_C
zi:du zu:do ze:da za:di lo:ga
du:vi do:vu da:ve di:vo gi:fu
vi:ja va:ju ve:jo vu:ji fe:tso
ja:zi ju:ze jo:za je:zo tsu:li

German infrequent group 2
Training Test

Attested Unattested

Identical C_C
zo:zi za:ze zu:za ze:zo lo:li
de:do do:du di:de da:di gi:gu
va:vu vu:vi vi:vo ve:va fe:fo
ja:je ji:jo je:ju jo:ja tsa:tsu

Non-identical C_C
lu:go le:gi li:gu lo:ga za:di
ge:fa gu:fe ga:fo gi:fu di:vo
fu:tsi fa:tsu fo:tsa fe:tso vu:ji
tsa:lo tso:le tse:lu tsu:li je:zo

Table 11. IPA-simplified items of infrequent German groups.

Mandarin frequent group 1
Training Test

Attested Unattested

Identical C_C
kwo:kwu: kwu:kwa: kwa:kwai kwaikwo: tswo:tswu:
tÈ:ta: t@utau ta:t@i tait@u thÈ:tha:
waiwo: wo:wa: wa:w@i w@iwai lail@u
sÈ:sai sais@u sausa: s@usÈ: xwo:xwai

Non-identical C_C
xwa:lai xw@ilau xwu:l@u xwo:l@i taiwa:
lÈ:tswo: lautswu: l@utswo: laitsw@i wa:kwo:
tswo:tha: tswu:th@u tswu:thau tsw@ithÈ: kwu:swo:
tha:xwu: th@uxw@i thauxwo: thÈ:xwa: sÈ:ta:

Mandarin frequent group 2
Training Test

Attested Unattested

Identical C_C
tsw@itswo: tswu:tsw@i tswu:tswo: tswo:tswu: kwaikwo:
tha:th@u thaithau thauthÈ: thÈ:tha: tait@u
la:lÈ: lÈ:l@i l@ulau lail@u w@iwai
xw@ixwu: xwaixw@i xwu:xwo: xwo:xwai s@usÈ:

Non-identical C_C
tauwo: tÈ:wai t@uw@i taiwa: xwo:l@i
wo:kwu: w@ikwa: waikw@i wa:kwo: laitsw@i
kwo:sw@i kwa:swu: kwaisw@i kwu:swo: tsw@ithÈ:

s@utÈ: sa:tau saut@u sÈ:ta: thÈ:xwa:
Table 12. IPA-simplified items of frequent Mandarin groups.
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Mandarin infrequent group 1
Training Test

Attested Unattested

Identical C_C
khwaikhwu: khwu:khwa: khwo:khwai khwa:khwo: úùhwu:úùhwai
úùhwo:úùhwu: úùhw@iúùhwo: úùhwo:úùhw@i úùhwu:úùhw@i thwo:thwu:

ü@uüÈ: üÈ:üau ü@uüau üauü@u ph@uphai
pje:pji: pjaupje: pjaupji: pji:pjau nje:nji:

Non-identical C_C
thwu:nji: thwo:nj@u thw@inje: thwu:njau khwu:üau
pha:thwu: ph@ithwo: phauthwu: phaithw@i pji:tshwu:
nji:úùhwu: nj@uúùhw@i nje:úùhwai njauúùhwo: tshwo:khwa:
úùhwu:pha: úùhwo:ph@i úùhwaiphau úùhw@iphai üaupje:

Mandarin infrequent group 2
Training Test

Attested Unattested

Identical C_C
úùhw@iúùhwu: úùhwo:úùhw@i úùhwaiúùhwo: úùhwu:úùhwai khwa:khwo:
thwu:thwo: thwo:thw@i thw@ithwu: thwo:thwu: tshwu:tshw@i
phaipha: pha:ph@i ph@iph@u ph@uphai üauü@u
nji:.njau nj@u.nje: njau.nj@u nje:.nji: pji:.pjau

Non-identical C_C
khwai.üÈ: khwa:.ü@u khw@i.ü@u khwu:.üau thwu:.njau
pje:.tshwo: pjau.tshw@i pje:.tshw@i pji:.tshwu: phai.thw@i
tshw@i.khwai tshw@i.khwo: tshwu:.khw@i tshwo:.khwa: njau.úùhwo:

ü@u.pji: üÈ:.pjau ü@u.pjau üau.pje: úùhw@i.phai
Table 13. IPA-simplified items of infrequent Mandarin groups.

D: Random effects summaries
The following tables summarise the random effects of all models.

Standard Deviation Correlation
Item (Intercept) 0.4145 –
Participant (Intercept) 1.0305 –
Participant (Response Time) 0.586 -0.52

Table 14. Random effects summary for Study I (German, attested).

Standard Deviation Correlation
Item (Intercept) 0.5161 –
Participant (Intercept) 0.9335 –
Participant (Response Time) 0.4546 -0.79

Table 15. Random effects summary for Study I (German, unattested).
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Standard Deviation Correlation
Item (Intercept) 0.3521 –
Participant (Intercept) 0.8180 –
Participant (Response Time) 0.4384 -0.84

Table 16. Random effects summary for Study II (Mandarin, attested).

Standard Deviation Correlation
Item (Intercept) 1.0137 –
Participant (Intercept) 0.4845 –

Table 17. Random effects summary for Study II (Mandarin, unattested).

Standard Deviation Correlation
Item (Intercept) 0.4587 –
Participant (Intercept) 1.0657 –
Participant (Response time) 0.6019 -0.63

Table 18. Random effects summary for Study I with attestedness and its interactions with
L1 and AL variables (German, attested, and unattested).

Standard Deviation Correlation
Item (Intercept) 0.4359 –
Participant (Intercept) 0.9484 –
Participant (Response time) 0.4551 -0.75

Table 19. Random effects summary for Study II with attestedness and its interactions with
L1 and AL variables (Mandarin, attested, and unattested).
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