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ABSTRACT 

 

Alcohol is known to impair fine articulatory control 

and movements. In drunken speech, incomplete 

closure of the vocal tract can result in deaffrication of 

the English affricate sounds /tʃ/ and /ʤ/, 

spirantization (fricative-like production) of the stop 

consonants and palatalization (retraction of place of 

articulation) of the alveolar fricative /s/ (produced as 

/ʃ/). Such categorical segmental errors have been 

well-reported. This study employs a phonologically-

informed neural network approach to estimate 

degrees of deaffrication of /tʃ/ and /ʤ/, spirantization 

of /t/ and /d/ and place retraction for /s/ in a corpus of 

intoxicated English speech. Recurrent neural 

networks were trained to recognize relevant 

phonological features [anterior], [continuant] and 

[strident] in a control speech corpus. Their posterior 

probabilities were computed over the segments 

produced under intoxication. The results obtained 

revealed both categorical and gradient errors and, 

thus, suggested that this new approach could reliably 

quantify fine-grained errors in intoxicated speech. 

Keywords: alcohol, deaffrication, palatalization, 

retraction, neural network. 

1. INTRODUCTION 

Alcohol intoxication has been shown to impair 

cognitive function and production of both 

suprasegmental and segmental properties of speech 

[1, 2, 3, 4, 5, 6, 7].  In English, the segmental errors 

encompass deaffrication of the affricate sounds /tʃ/ 

and /ʤ/ [5, 7], spirantization (fricative-like 

production) of the stop consonants [5, 7] and 

palatalization (retraction of place of articulation) of 

the alveolar fricative /s/ (produced as /ʃ/) [5, 9]. These 

errors occur due to impaired ability to control timing 

and movement of the active articulators, resulting in 

failure to form a complete closure (deaffrication and 

spirantization) or to achieve and/or maintain an 

appropriate degree of opening, at an intended location 

in the vocal tract (place retraction). Crucially, these 

errors have been described as categorical through 

such coarse-grained measures as perceptual judgment 

[e.g., 8] and phonetic transcription of the affected 

speech segments [e.g., 2]. However, sub-contrastive 

or gradient errors, below the level of a segment or 

feature are likely missed by such techniques due to 

the listeners’ perceptual bias [10]. Further, while 

acoustic measurements could circumvent perceptual 

bias, describing categorical rather than gradient 

phonetic errors have largely been the focus of most 

acoustic-phonetic studies of intoxicated speech. 

The goal of this study is to examine the nature, 

gradient and categorical errors, at the feature level in 

intoxicated speech in an English corpus using a neural 

network model known as Phonet. Inspired by 

computational approaches using forced alignment to 

measure surface, gradient phonetic variations, this 

approach quantifies gradient phonetic variation of 

deaffrication, spirantization and place retraction from 

the posterior probability of relevant phonological 

features, computed directly from the input signals by 

bidirectional recurrent neural networks. In this study, 

the relevant phonological features are [anterior], 

[continuant] and [strident]. These features capture 

relative location of the oral constriction, amount of 

airflow impedance and intensity of frication noise, 

respectively. A categorical error is operationalized as 

a sign shift of the phonological features (e.g., from 

[+anterior] to [-anterior]), while gradiency of an error 

is reflected in the posterior probability values of a 

phonological feature. A brief description of Phonet is 

present in § 2 below.   

2. PHONET 

Phonet [11] is a bi-directional recurrent neural 

network model, trained to recognize input phones as 

belonging to different phonological classes defined 

by phonological features (e.g., anterior, continuant 

and strident). It is semi-automatic and only requires a 

segmentally-aligned acoustic corpus (using forced 

alignment). Input to Phonet is log-energy distributed 

across triangular Mel filters computed from 25-ms 

windowed frames of each 0.5 second chunk of the 

input signal (see [11] for details). Once trained, 

posterior probabilities for different phonological 

features of the target segments can be computed by 

the model. Phonet has been found to be highly 

accurate in quantifying degree of lenition in Spanish 

[7, 15, 21, 22] and modelling the speech impairments 

of patients diagnosed with Parkinson’s disease [11]. 
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The architecture of Phonet is described in detail in 

[11]. 

Phonet can be customized with different sets of 

phonological features and acoustic representations. In 

this study, we focus on the probability of the 

phonological features [anterior], [strident] and 

[continuant] to capture retraction of place of 

articulation, deaffrication, and spirantization of 

English voiceless and voiced stops /t, d/, voiced and 

voiceless affricates /tʃ, dʒ/, and fricatives /s, ʃ/. A 

fricative-like realization due to an incomplete closure 

of the oral constriction would be associated with a 

relatively higher [continuant] and [strident] 

probability while a relatively low [anterior] 

probability would indicate a more retracted place of 

articulation.  

3. METHODS 

3.1. Materials 

The target consonants for this study are English stops 

/t, d/ (Ns = 2,237 and 1,085), affricates /tʃ, dʒ/ (Ns = 

144 and 160), and fricatives /s, ʃ/ (Ns = 1,430 and 96) 

from a corpus of intoxicated speech [7]. 

3.2. Stimulus recording procedure 

The corpus contains recordings of four female, native 

speakers of British English reading a dialogue 

naturally (i.e., not in an animate, acting voice). The 

original text of the dialogue (based on [17]) was 

edited to ensure that it is gender- and emotionally 

neutral, void of overly long turns, and representative 

of the English phonemic inventory (available at [18]). 

Two separate readings (sober then drunk) across 

participants, on different days (1-2 months apart) 

were recorded in a sound-attenuated room at 44.1 kHz 

sampling rate and 16-bit amplitude resolution in 

stereo and were then converted to mono using 

Audacity. The speakers were told not to eat, drink, or 

use mouthwash 2 hours before each session and not 

to smoke half hour before each session.  

The participants’ blood alcohol concentration 

(BAC) was measured using a breathalyzer [AlcoMate 

(Macomb Township. MI) Premium AL-7000] at the 

beginning of the sober session to ensure absence of 

alcohol in their system. Intoxicated recording session 

began when BAC reached 0.12% after consumption 

of vodka or rum, mixed with juices. 

3.2. Stimulus pre-processing 

The recordings were divided up into utterances which 

were then manually annotated for any disfluencies. 

The disfluent utterances (8.5%) were not discarded 

since their exclusion did not qualitatively change our 

findings. The utterances were forced aligned using 

the Montreal Forced Aligner (version: 2.0) [12] with 

its released pretrained English model. 

3.3. Phonet training procedure 

Librispeech [16], a large corpus of English 

audiobooks was used as a representative English 

speech sample. A subset of the cleaned portion of 360 

hours was selected. The corpus was then forced 

aligned using the Montreal Forced Aligner (version: 

2.0) [12]. The phone set was set to IPA. For other 

parameters default values were used. 

Model training with Phonet was performed on an 

NVIDIA GeForce RTX 3090 GPU using the Keras 

[19] library. The corpus was randomly split into a 

train subset (80%) and a test subset (20%) using the 

Python (Version 3.9) scikit-learn library [14]. 

Twenty-one Phonet models were trained for 20 

phonological classes (consonantal, syllabic, voicing, 

labial, coronal, dorsal, lateral, nasal, rhotic, anterior, 

continuant, sonorant, strident, diphthong, high, low, 

back, round, stress, tense), and pause. 

The model was highly accurate showing 

unweighted average recall (UAR) ranges from 91% 

(coronal)-98% (pause). Critically, the UARs for the 

anterior, continuant and strident features are 93%, 

92% and 97%, respectively. The model was then 

applied to our selected word tokens from our forced-

aligned intoxicated speech corpus with /t, d, tʃ, dʒ, s, 

ʃ/. The predictions were computed for 10-ms frames. 

For a token containing multiple frames, the average 

prediction from the middle frame(s) was taken as its 

prediction. Anterior, continuant and strident posterior 

probabilities obtained for each target consonant are 

then used for statistical analyses. 

3.4. Statistical analyses 

All statistical analyses were performed using the lme4 

package [13] in R [13]. Contrast coding (-0.5, 0.5) 

was used for binary categorical variable. Random 

variables included speaker and word. Two 

complementary analyses were performed. First, to 

examine if posterior probabilities could predict 

drinking status, for each target consonant, a binary 

logistic regression analysis was performed with the 

three posterior probabilities (anterior, continuant and 

strident) as predictors and drinking status (sober and 

intoxicated) as dependent variable using the glmer 

function. A contrastive or categorical error was 

inferred when a feature emerged as the significant 

predictor. Second, to evaluate gradiency of an error, 

drinking status was entered as predictors in linear 

regression models (lmer) performed to investigate its 

predictions on the three posterior probability values 

for each target consonant. Increase or decrease in 
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posterior probability of a feature indicate degrees of 

error gradiency. For both analyses, “drunk” was the 

reference level. Based on previous literature [5, 7], a 

higher continuant and strident posterior probability is 

expected for /t, d/ and /tʃ, dʒ/ while a lower anterior 

probability is expected for the fricative /s/ in the 

intoxicated relative to the sober condition [5, 9].  

4. RESULTS 

Results of the binary logistic regressions analyses 

with anterior, continuant and strident posterior 

probabilities as predictors and drinking status as the 

categorical, binary dependent variable are 

summarized in Table 1.  

 

Cons. Predictor Odds Ratios P value 

/t/ Anterior 1.11 0.615 

 Continuant 0.43 <.001 

 Strident 0.88 0.353 

/d/ Anterior 2.14 0.046 

 Continuant 0.46 0.009 

 Strident 1.07 0.760 

/tʃ/ Anterior 1.88 0.437 

 Continuant 0.18 0.023 

 Strident 1.98 0.641 

/dʒ/ Anterior 1.17 0.866 

 Continuant 0.01 0.015 

 Strident 1.77 0.706 

/s/ Anterior 2.97 0.471 

 Continuant 0.62 0.473 

 Strident 14.35 0.153 

/ʃ/ Anterior 0.80 0.784 

 Continuant 0.82 0.847 

 Strident 1.51 0.954 

Table 1: Results of the binary logistic analyses. 

 

From this table, we can see that continuant posterior 

probability emerged as the only significant predictor 

of drinking status for /t/, /tʃ/ and /dʒ/. Specifically, as 

the continuant probability increases, the likelihood 

that the speakers were sober decreases (odds ratios 

<0.5). For /d/, both continuant and anterior 

probabilities are the significant predictors. However, 

as expected, as the anterior probability increases, the 

likelihood of the sober status increases (odds ratios 

>0.5). No significant predictor was found for /s/ [odds 

ratios = 0.62-14.35, p>.005] and /ʃ/ [odds ratios = 

0.80-1.51, p>0.05]. However, the >0.5 odd ratios 

indicated that as the anterior, continuant and strident 

probabilities increase, the likelihood of the sober 

status also increases. These results suggested that 

categorical errors (i.e., [-continuant] > [+continuant]) 

occurred under intoxication for /t/, /d/, /tʃ/ and /dʒ/. 

Additionally, for /d/, a categorical shift from 

[+anterior] > [-anterior] also occurred. On the other 

hand, no categorical error was detected for /s/ or /ʃ/.  

Tables 3a, b and c summarize the results of the 

linear mixed-effect regression models with drinking 

status as predictors (reference level = drunk) and 

posterior probabilities of the three phonological 

features as the dependent variables. 

The results obtained indicated that a significantly 

higher anterior probability for /t/, /d/ and /s/ [βs= 

0.029, 0.042, 0.013; ps≤.001] is predicted for the 

sober speech relative to the drunken speech, but a 

non-significant change in anteriority between the two 

speech conditions is predicted for /tʃ/, /dʒ/, and /ʃ/ [βs 

=0.009, -0.037, -0.014; ps= >.0.05] (Table 2a). β 

values suggested that sober /tʃ/ is more anterior than 

drunk /tʃ/ while sober /dʒ/ and /ʃ/ are less anterior than 

drunk /dʒ/ and /ʃ/. In other words, a shift in place of 

articulation is significantly greater for /t/, /d/ and /s/ 

than for /tʃ/, /dʒ/, and /ʃ/ under intoxication. 

 

Predictor Consonant β P value 

 

 

Anterior 

/t/ 0.03 0.001 

/d / 0.04 <0.001 

/tʃ/ 0.009 0.830 

/dʒ/ -0.037 0.399 

/s/ 0.01 0.001 

/ʃ/ -0.014 0.746 

Table 2a: Summary of the linear regression 

models for anterior probability. 

 

For continuant probability (Table 2b), a significantly 

lower value is predicted for /t/, /d/, /tʃ/ and /dʒ/ [βs=-

0.098, -0.061, -0.102, -0.068; ps≤.01], but not for /s/ 

[β = 0.009, p=0.098] or /ʃ/ [β = -0.005, p = 0.88] under 

the sober condition compared to the drunk condition. 

β value is positive for /s/, but negative for /ʃ/, 

indicating that /s/ is more continuant when sober 

while the opposite is true for /ʃ/. These results suggest 

that oral constriction for stops, and affricates became 

significantly less complete under intoxication. In 

contrast, oral constriction size was not significantly 

altered for the two [+continuant] consonant, /s/ and 

/ʃ/, when the speakers became inebriated. 

 

Predictor Consonant β P value 

 

 

 

Continuant 

/t/ -0.098 <0.001 

/d / -0.061 <0.001 

/tʃ/ -0.103 0.013 

/dʒ/ -0.068 0.003 

/s/ 0.009 0.098 

/ʃ/ -0.005 0.880 

Table 2b: Summary of the linear regression models 

for continuant probability. 
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Finally, Table 2c shows that strident probability for 

/t/ was predicted to be significantly lower under the 

sober condition while the opposite is true for /s/. No 

significant difference [p>.05] was predicted for the 

remaining consonants. Although statistically non-

significant, β values for /d/ [-0.022] and /tʃ/ [-0.017] 

are negative suggesting less stridency in their 

production when sober than when drunk while that of 

/dʒ/ [0.022] is positive and that of /ʃ/ [0.000] equals 

to 0, suggesting more stridency for /dʒ/ but no change 

in stridency for /ʃ/ when sober. These results suggest 

that /t/ is significantly less strident (less turbulent 

noise) when produced under the sober condition. On 

the contrary, drunk /s/ is less strident than its sober 

version. Furthermore, minimal change in degrees of 

stridency is observed for /d/, /tʃ/ and /dʒ/ while no 

change is predicted for /ʃ/.  

 

Predictor Consonant β P value 

 

 

 

Strident 

/t/ -0.064 <0.001 

/d / -0.022 0.175 

/tʃ/ -0.017 0.492 

/dʒ/ 0.022 0.451 

/s/ 0.014 0.001 

/ʃ/ 0.000 0.943 

Table 2c: Summary of the linear regression 

models for strident probability. 

5. DISCUSSION AND CONCLUSION 

To detect categorical and gradient errors in 

intoxicated speech, a new computational approach, 

Phonet, was applied to a corpus of intoxicated English 

speech. Target error types are deaffrication, 

spirantization and retraction of place of articulation 

whose degrees of variation are estimated from 

posterior probabilities of three phonological features, 

[anterior], [continuant], [strident].  

Binary logistic regression models yielded 

[continuant] as the significant predictor of drinking 

state for /t/, /tʃ/ and /dʒ/ while both [continuant] and 

[anterior] emerged as the significant predictors for 

/d/. If a binary, categorical shift of a feature is 

responsible for its significant predictive power, then, 

these results suggested that categorical errors ([-

continuant] > [+continuant]) occurred for /t/, /d/, /tʃ/ 

and /dʒ/ under intoxication, suggesting that the size of 

the oral constriction contrastively shifts from a sober 

to a drunk state. For /d/, a categorical shift from 

[+anterior] > [-anterior] also occurred in drunken 

state, indicating that a concurrent and significant 

amount of place retraction also took place. The fact 

that /tʃ/ and /dʒ/ are [-anterior] may account for why 

further place retraction did not occur. In turns, 

neutralization (loss of contrastivity) in anteriority 

between /t/ and /tʃ/ could account for why /t/ did not 

undergo place retraction since they would both be [-

anterior] if /t/ retracted. This suggest that articulatory 

planning may be intact, but the fine-grained motor 

control is partially lost when intoxicated.  

Surprisingly, no categorical error was committed 

for /s/ or /ʃ/ under intoxication, at least not at the BAC 

level tested. Previous literature led to an expectation 

that a categorical shift in place of articulation would 

occur for /s/ (i.e., [+anterior] > [-anterior]) [5, 9]. It is 

possible that this error is only attested at a higher 

BAC level. However, it is worth noting that /s/ and /ʃ/ 

are both [+continuant, + strident]. It is possible that 

these shared and redundant features “add additional 

motoric instructions to enhance the saliency of the 

jeopardized features” [20, p. 33], namely [anterior] in 

this case. Nonetheless, the fact that this error has been 

previously reported suggested a limit of this 

enhancement effect.  

Gradient errors are revealed by linear regression 

analyses. For instance, a shift in place of articulation 

was found to be significantly greater for /t/, /d/ and /s/ 

than for /tʃ/, /dʒ/, and /ʃ/ under intoxication. These 

results suggest that degree of place retraction in 

intoxicated speech is constrained by the existing place 

feature of the affected consonants: [+anterior] 

consonants will sustain a greater degree of place shift 

than [-anterior] consonants. 

A similar constraint is observed for [continuant] 

leading to gradiency in continuant error. Continuant 

posterior probability significantly increased for [-

continuant] consonants, /t/, /d/, /tʃ/, and /dʒ/, but not 

for [+continuant] consonant, /s/ and /ʃ/. This is due, 

perhaps, to a higher degree of continuance (greater 

oral aperture) which would lead to reduction of 

intensity of frication noise (i.e., stridency). 

Finally, gradient errors involving [strident] was 

also found. Sober /t/ is significantly less strident than 

drunk /t/, suggesting an incomplete closure resulting 

in stridency. In contrast, a change in stridency was 

relatively small for /d/, /tʃ/ and /dʒ/. These results 

suggest that size of oral opening of [-continuant] 

consonants could increase.  In addition, drunk /s/ is 

significantly less strident than its sober variant, 

suggesting a further widening of the oral aperture 

leading to a loss in stridency. However, no change 

was observed for /ʃ/. This result suggests that oral 

aperture could further widen for [-anterior, 

+continuant, +strident], /s/, but not for [+anterior, 

+continuant, +strident], /ʃ/.   

Both categorical and gradient errors are revealed 

by Phonet, suggesting that it could reliably quantify 

fine-grained errors in intoxicated speech. Our 

findings need to be confirmed with more subjects, and 

can be extended to languages with different 

contrastive phonological features [7], and compared 
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with speech by clinical populations, such as 

Parkinson’s disease. 
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