The effect of word segmentation and phonological neighbours on spoken word recognition in Mandarin Chinese

Anh Kim Nguyen¹ & Kevin Tang^{2 3}

1 Institute of Linguistics, Faculty of Arts and Humanities, Heinrich Heine University Düsseldorf

2 Department of English Language and Linguistics, Faculty of Arts and Humanities, Heinrich Heine University Düsseldorf 3 Department of Linguistics, University of Florida

{anngul04, kevtang}@hhu.de

Background

DPhonological neighbours (PN) in English are determined based on the phonemic segmentation of words

Mandarin Chinese uses whole syllables as proximate units [1]

□ Currently no uniform approach to count PN in Mandarin Chinese yet [2]

Fig1: The number of direct neighbours to "lião" changes depending on how the word is segmented, example adapted from [2]. Segmentation patterns based on [4]

ightarrow What is the basis for PN in Mandarin Chinese?

Findings 1

- Open-set speech-in-noise spoken word recognition task
 Participants typed out what they heard in pinyin
- Mixed Effect Regression and AIC/BIC to find which pattern could predict participants' accuracy best:

Yao & Sharma 2017	Our Findings		
Lexical Decision Task (Reaction time ~ Pattern)	Open Set Recognition Task (Accuracy ~ Pattern)		
Onset + Rime + Tone	Onset + Rime + Tone		
Onset + Rime	Onset + Rime		
Phonemes + Tone	Phonemes + Tone		
Phonemes	Phonemes		

- 1. Tone seems only relevant when using Onset+Rime segmentation
- 2. Tone seems irrelevant when using a phonemic segmentation
- Why is Phonemes better than Onset + Rime?
- Fig.1 shows that Onset+Rime segmentation treats distant neighbours the same as immediate neighbours
 Onset, rime and phoneme carry different amounts of information: The current definition of neighbours
- based on one-edit distance favours phonemic representation

Why are Phonemes better without Tone?

Redundancy: segmental information might be correlated with tone making tone redundant
 Tonal neighbours might be weighted differently (specifically less) from Segmental neighbours

Previous Findings

Number of PNs influence reaction time in lexical decision tasks
 More neighbours = Longer reaction time

Analyses on lexical decision tasks showed that the Onset+Rime+Tone pattern captures participant answers the best [3]

RT ~	С	G	V	Х		Т
RT ~	С	G	V	Х		
RT ~	С	G	V		Х	Т
RT ~	C	G	V		Х	

 \rightarrow Onset+Rime+Tone is the better segmentation pattern

when counting PN in Mandarin Chinese

Does this conclusion hold for a different experiment task type?

Findings 2

D Regression analysis on PN counts between patterns

"Which words have particularly more/less neighbours, when including/excluding tone information?"

Fig2: Correlation of phonological neighbourhood density (PND) in onset+rime segmentation (left) and phonemic segmentation (right). Greyed points are residuals SD > 1. Top 20 Words, whose PND differed the most for each pattern are labeled. The greyed points were selected for model refitting.

 \rightarrow Refitting regression models with only those words showed that

patterns with tonal information always predicted participants'

accuracy best.

This supports the redundancy explanation for phonemes+tone performing worse than phonemes only

- Tonal information is more relevant to words with many direct tonal neighbours
- We find similar results to [3]: Onset-Rime-Tone representation is the better basis for PN in Mandarin Chinese
- More in-depth investigation on the finer differences between the segmentation patterns and the information content of their units is needed
- The definition of PN may be too strict: A more perceptual approach to tone [5] instead of numeric, or the Generalised Neighbourhood Model instead of One Edit Distance as

alternative ways to count and represent PN

iferences:
] Padraig G. 0'Seaghdha, Jenn-Yeu Chen, and Train-Min Chen. Proximate units in word production: Phonological encoding begins with syllables in Mandarin Chinese but with segments in English. Cognition, 15(2):282-302, 2010.
] Marl D. Neergaard and Chu-Ren Huang. Constructing the Mandarin phonological entwork: Novel syllable inventory used to identify schematic segmentation. Complexity, 2019:1-21, April 2019.
] Yao Yao and Bhamini Sharma. What is in the neighborhood of a tonal syllable? evidence from auditory lexical decision in Mandarin Chinese. Proceedings of the Linguistic Society of America, 2:45, June 2017.
] Yao Yao and Bhamini Sharma. What is in the neighborhood of a tonal syllable? evidence from auditory lexical decision in Mandarin Chinese. Proceedings of the Linguistic Society of America, 2:45, June 2017.
] Yao I David Neergaard, Monghri Xu, James S. German, and Chu Ren Huang. Database of word-level statistics for Mandarin Chinese. Methods, 54(2):987-1009, August 2021.
] Do, Y., & Lai, R. K. V. (2020). Incorporating tone in the modelling of wordlikeness judgements. Phonology, 37(4), 577-615.